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Abstract

The Richards equation is adopted as a fundamental equation for the solution

of unsaturated infiltration flow. At the first stage, a new boundary condition

has been introduced and its accuracy has been cross checked with

experiments. At the second stage, on the lumping process of non—dimensional

form of Richards equation, a compensation factor has been proposed to

equalize the semi-lumped equations. Finally, the relation between storage and

discharge has been achieved by fully lumped equations.
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1.Introduction:

Basically the infiltration flow is dependent on the physical
properties of the soil such as water retention, permeability, slope, slope
length and slope depth. Also there are many other parameters in the field
which are difficult to obtain. On the other hand, the computation base on
Richards equation takes much time.

Therefore, to decrease the computation
time, a storage function model needs to be
derived. Fujita,M.(1981) and
Takasao,T.(1985) derived a storage function
model wusing kinematic wave theory and
Matsubayashi,U.(1994) proposed a storage
function model wusing Richards equation.
Matsubayashi,U. (1994) didn't explain the
lumping process in detail. One of the aims
of this paper is a detail elaboration of
lumping process using Richards equation.

R

2. Two Dimensional Unsaturated Flow Fig.l:Profile of soil column

Equation:

The infiltration of rain into the so0il can be expréssed by
Richards equation (equation (1)) which is applied to a soil column. The
schematic conditions of soil column are shown in figure (1) where (L) is
slope length, (D) is slope depth and (a) is slope.
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(0)is moisture content in the soil, (t) is time, (v, ) and (v,) are fluxes
in(x) and (y) directions. These fluxes can be derived by Darcy's equation.
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(¢) is water potential in the soil and (K) is conductivity of soil which
can be expressed as:

- e_ez p

K= K, (65-61) (4)
Where (K,) is saturated conductivity of the soil, (f) is dependent on soil
property, (6,) and (0,) are maximum (saturated) and minimum water content
of the soil. The equation of water content can be derived by Haverkamp
equation.

6= —2°_(6.-6,) +6, (5)

a2+;l,2

(¥) is suction in the soil and (a) is dependent on soil property. Equations
(2) and (3) can be rewritten as following:

= aZ ’ i —_aji = ' a? P —_a_{ll
Vy= K (a2+¢2) (sine aX) (6) v,= K (a2+1//2) (cosa ay) )

The solution of Richards egquation has been considered by following boundary
conditions.

y=0 Vy= I cosa (8) , y=D v,= 0 (9) , %x=0 v,=0 (10)

At x=L different boundary conditions have been proposed by researchers for
example:

ﬂ: 82v’:
Se= 0 (11) e 0 (12)

These equations are physically explained that the suction (¢¥) doesn't
change abruptly near the boundary and therefore they have an effect to
depress the discharge. Matsubayashi,U.(1994) increased the horizontal
hydraulic conductivity ten times greater than vertical hydraulic
conductivity to avoid such a phenomena. In the present study, we introduce
a new boundary condition (equation (13)) and its validity has been cross
checked with experiments. The experimental conditions are shown in table
(1). The soil properties such as (6,,0,k,f and a) are also obtained by
other experiments,

x=L e _ g (13)
ox

By using experimental condition and new
boundary condition (equation (13)) the Slope Length/500 (cm)
Richards equation has been solved and the ISlope Depth 40 (cm)
result is shown in figure (2). The symbol lope Angle [0.1-0.2 (xdn)
( o-e—©-) shows the discharge, resulted from 8, 0.4
calculation. The proposed boundary 8, 0.05
condition possess a good fitness to the K, 0.009 (cm/sec)
experimental discharge. Further, we B 2
computed the (§-¢) relation and the storage E“ 65 (om)
is calculated in two ways. The relation

(8,-4) is derived according to equation Table 1:Range of parameters
(14) and the result is shown in figure (3). used in experiment

Besides the relation (5,-&) is derived by
using equation (15) and the result is shown
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in figure (4). Both relations show good accuracy. In the present study, we
used a new numerical method which due to the lack of space we can not
elaborate.

Sl_fo rde j; & dt (14)
LpD P

§§=‘[ f O(x,y,t) dy dx-§, (15) where §;=initial storage
0 J0

3. Non Dimensional Form of The Basic Equation:

The - physical parameters of basic equations can be reduced by
converting it into the non-dimensional form. For this purpose the following
relationships have been considered.

t=t, T, ¢y=¢.%, x=Xx X, Y=y, Y, V=V, Y,

v,=Vv,V,, r=r,R, 6=60, 98, d=aq, 0, §=8, 8 (16)
Following assumptions have been made for non-dimensionalizing process.
x.=1, .= d, V.= K, r,= K,
do,
0,= 6,-0,, te=——, ¥=d, a=k.d, s=0.dl (17)

s
The non-dimensional form of equations (1),(6),(7),(4) and (5) can be written
as following:

a8_ ., d an_aVy a_
or ‘T ex ey (18 a ® 19
_ Az f . 4 _; Az § _0d
= _A2+Q2)(31na <% (20) VY—{A2+¢2}(cosa 75;) (21)
: B 2
k= A2 (22) o= A, O (23)
A2+92 A?+92 0.-6,
The non-dimensional initial and boundary conditions can be written as:
= % (x-1) sina+(Y—1)cosa+% (24)
ov,
= - = ——— 26
X=0 Ve=0 (25) X=1 3% 0 (26)
Y=0 V,= R cosa (27) Y=1 V,=0 (28)

The initial condition in equation (24) means initially, water is available
in the so0il but there is no discharge. This initial condition has been
satisfied the experiment's initial condition.

4.Semi~Lumped Unsaturated Flow Equation:

By integration of the equations (18),(20),(25) and (26) along (Y),
we can obtain semi-lumped equations.

) d an=
7¥f+(ff)7§§' R cosa (29) where 0< X <1
o A P 438D
QX— {ﬁ} (Slna —1———8-7(‘) (w)
X=0  0=0 (31) x=1 9., (32)
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(@) in equation (29) and @) in equation (30) are averaged water content
and suction along depth. However,when the relation in equation (32) replaced
in equation (29) it has been created disturbance in calculation and it gave
defaulted result. To avoid such a condition, following relation has been
considered.

initia1= Cconstant (33)

X=1 £%2= 0 or 8=-0
oT

To equalized the approximation of integration following relation has been
considered.

1 A2 B A2 B

f1= [y dy (=) (34)
When the relation of equation (34) replaced in equation (30), it has been
realized that it destroys the situation of boundary condition at (X=0).
Therefore to equalize the relation in equation (30), equation (35) has been
introduced.

_ Az f . 489
0= ¥ {W) (sina % (35)
Where (y) is obtained through various numerical calculations.
vy= EXP{0.1p-0.07+(0.09-0.17B) Ln(A)} (36) where o= 0.2~0.6

For different ranges of parameters the validity of (y) is shown in figure
(5) briefly. (y) is obtained under uniform rain therefore to check its
accuracy, we applied different type of rain as it is shown in figure (6).

5. Storage Function Model:

The relation between storage and 002 <16
discharge can be derived under the steady state f T=5
condition. “mﬁ

0,.= L R x cosa (37) o oot
d ] T=20
By futher integration of equations (29) and 0005
. . d od 3
d th i s —_. == y T=
(35) under e condition (sina > 7 aX), ao.vxu.u‘.”.,”,.@nﬁ
0.0 0.2 2 A
equations (38) and (39) are obtained. ° f o1s e
un221
%;+(%)Qx=1= R cosa (38) D=0.300 A= 1.500 g=0.200 §=2.000 Re 0020
0 Fig .7: Profile of discharge

5= (B9 JjF

B+1’ vy sina GS—BI) (39) along (X)

Equation (39) is almost similar to Matsubayashi,U.(1994) storage function
model. Figure (8) shows the result obtained by semi-lumped equations. In
principal, the equations (29) and (35) have to be solved theoretically to
find (S7Q) relation at unsteady state. However, it is difficult to solve
them theoretically. Therefore, a convenient method has been introduced by
authors. Let's assume:
AZ__ ged (40)
A2+?
By substituting the relation in equation (40) into equation (35), following
relation can be achieved.
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_ . ped_ yd: debe® a
Q=¥ sina e 732- 3% (41)

With the respect to figure(7) following relation can be assumed. The
relation in equation (42) means the steady state condition of discharge
along (X) where the relation in equation (43) means the unsteady state
condition.

oX)=0,, X (42) 0(X) = -X(X-2) Oy, (43)

Let's assume a new coordinate system X= 1-X where according to boundary

condition at ¥=0 ebe= gPet (44)
By considering the new coordinate system and substituting the relation in
equation (42) in equation (35) following relation can be achieved.

Oy - X 1 v -G, % 1 ﬂ € sina
Z.= ebebs (__FX0 - 14 C.X- - 1‘?’ 4 h = 46
1 < T ) {1 e A ( 1 l) ) e ( 5) where Cl —_—— ( )

Similarly, by replacing the equation (43) in equation (35) we can derive.

z,= ebe¥= (Do) )(q_goky (g2 2%, 2 ), 2 -af (47)
& G Cf C12
The (S~Q)relation can be obtained by following equations.
1 1 1 1
1,7 Q%0 13 17 Ci0 15
S,= | z" dx= {22} g (c,, 48 = [z dx= {2208 @ (¢, 49
1 L ! ysine 2 (G B) (48) 2 L 2 ysina 2 (G B) (49)
Where G,(C;,B) and G,(C,,B) are obtained by numerical calculations.
G, (C,B)=0.151 logC,+0.331 logB+0.241 (50)
G, (¢, B)= (-0.064 logP+0.21) logC,+0.31 logP+0.31 (51)

Due to the lack of space, we can not show the results of equations (51) and
(52).
6.Conclusion:

At the first stage, we introduced a new boundary condition at the
outlet of soil column and its accuracy is examined with experimental
results. At the second stage, we proposed a compensation factor (y) to
equalize the semi lumped equation to the Richards equation. Finally, we
found out the storage function model can not satisfy the actual (S-Q)
relation and it may satisfy in case of long duration of rainfall.
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