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A New Numerical Model for Dam-Break Problem

By A. K. JHA* , J. AKIYAMA** M. URA*** and K. MATSUMOTO****

A newly developed numerical model, based on the fully conservative
flux splitting technique, by Jha et al. is further investigated. Dam-break
flood waves in rectangular, trapezoidal and suddenly expanding
channels are simulated to demonstrate model's ability to handle natural
channel geometry. The model's response to the variations in the bed
roughness and the time weighting factor is also examined.
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1. INTRODUCTION

The governing equations for dam-break flood wave propagation in a channel are generally solved by a
mathematical model and, therefore, many mathematical models!) exist for this purpose. However, there still
does not exist a model which can be claimed as giving the best result in all possible situations.

Jha et al.2) developed a new model based on a one-parameter finite difference scheme. This model
utilizes the concept of approximate Jacobian3) which facilitates fully conservative splitting of the flux vector.
The superiority of the Jha et al's model?) over the MacCormack®) and the Gabutti3) schemes for dam-break
flood _w;u:ie and reflected shock wave propagation in horizontal and frictionless rectangular channels was
established.

This paper continues the further investigation of the Jha et al's?) model and its application to the dam-
break problem in rectangular and trapezoidal channels as well as in a expanding channel. The behaviour of the
new model with varying Manning's coefficient and the time weighting factor is also investigated.

2. GOVERNING EQUATIONS

The governing equations for unsteady open channel flow can be expressed in vector form as
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wherein A = cross-sectional area; Q = discharge; B = top width of flow at height h from channel bottom; g =
acceleration due to gravity; So= bed slope; S¢= friction slope; x = distance along the channel; and t = time.

The friction slope, Sy, is computed by the Manning’s formula. I is the force exerted by channel walls
due to expansions and contractions and is given by
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where W() is the channel width at distance 1 from the channel bottom. The basic assumptions behind the

goveming equations are: (1) water is incompressible, (2) pressure is hydrostatic, (3) bottom slope of the
channel is sufficiently small, and (4) geostrophic effects and wind stresses are negligible. Since the governing
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equations are hyperbolic, M can be diagonalized and split into positive and negative components. Eq.1 can,
thus, be written as

U U . U
7+M+.—37+M.—a—x—+8-0 ........................................................ (&)

The space derivative associated with the positive component of the Jacobian matrix represents the
information carried along the positive characteristic coming from upstream of the flow and it may be
approximated by a backward space difference. Likewise, the space derivative associated with the negative
component of M may be evaluated by a forward space difference. Therefore, the scheme based on Eq.5 will
appropriately handle the directional property of signal propagation. However, Eq.5 is not in the conservation
form. The correction necessary to retain the conservative properties while using Eq. 5 is explained next.

3. CONSERVATIVE SPLITTING

For Euler equations Roe3) developed a technique for constructing approximate Jacobian ensuring
conservation. The idea was subsequently applied to shallow water equations by Glaister6), Alcrudo et al.” and

Jha et al2). Roe's technique uses mean value theorem, Following Roe's approach an approximate Jacobian of
flux is constructed for every pair of adjacent nodes which satisfies conservative properties and is consistent
with the governing equations. The details of the approximate Jacobian may be referred to the paper by Roe3) or
by Jha et al.2). We utilise this concept of approximate Jacobian and re-define Jacobian M as
M{=Mi 2 , Mi=Mi.p , and Mit12 = MUy = MUj, Usygp) coveeennnenn (6)

where a tilde over M indicates the approximate Jacobian. The problem has now reduced to defining the
arguments of approximate Jacobian i.e. Uj+1/2 and Uj-1/2, in Eq.6. These arguments of approximate
Jacobian are fully defined if depths and velocities at points (i-1/2) and (i+1/2) are known. The velocities and
depths at points i+1/2 and i-1/2 are expressed as
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4. FINITE DIFFERENCE SCHEME

The following one-parameter scheme is used to advance the solution in time.
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where superscripts t and t+1 = known and higher time level respectively; subscript i = the grid location; At =
the time step; and 6 = time weighting factor. We make use of the following operators

Axfi=fia -5 Vxfisfi-fig 10

and define oo = Ax/At, where Ax = grid interval. Thus, the complete finite difference equation is obtained as
Ut +aelMy, V.Ut + M, o)

U+ a(1-0) (ML, .V, Ul + My, AU} + 88 an
Details of the finite difference approximations may be referred to Jha et al2). Similar sets of finite
difference equations for all nodes along a channel can be arranged in the form of a block tri-diagonal matrix.

5. MODEL APPLICATIONS AND RESULTS

The model described above was applied to dam-break problems under many different conditions. The
dam located in the middle of a 2000m long channel is removed instantaneously to simulate sudden dam failure.

The results are presented in the form of the water surface profile along the channel. Courant number = 1, Ax =

5m and © = 0.6 are used unless specified otherwise. The ratio of tailwater depth, hy, to the water depth in the
reservoir, hy, is hereafter referred to as the depth ratio. The mass balance error is of the order of 10-2 to 104%.

Example 1. Rectangular, Horizontal and Frictionless Channel: Dam-break flood wave propagation in a

rectangular, horizontal and frictionless channel is considered to compare results of the present model with the
analytical solution®). Initially hy is Sm and by is 0.5m giving a depth ratio of 0.1. The computed and analytical

water surface profiles at (40 + At) seconds are shown in Fig.1. It is seen that the proposed model accurately
simulates the dam-break flood wave propagation in this case.

—826—



Example 2, Sloping Rectangular Channel with Bed Friction: This example considers the effect of bed friction
and the channel bed slope. The channel has a uniform bed slope of 1/1000. Manning's coefficient is specified
as 0.025. The initial condition in the flood plain is given as the uniform flow of 2.49 m3/s per unit width of the
channel and that in the reservoir portion is a horizontal water surface with a depth equal to 15m at the dam site.
The upstream and downstream boundaries are specified with an inflow and outflow, respectively, of 2.49

m3/s/m. The water surface profile along the channel at (30 + At) seconds following the dam collapse is shown
in Fig. 2. The model yields appropriate shape of the water surface profile.
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Example 3. Trapezoidal Channel: This example considers the propagation of dam-break flood wave in a
trapezoidal channel. The channel is horizontal with the Manning's roughness coefficient equal to 0.015. Base
width of the channel is Sm and the side slope is 1V:1.5H. The reservoir has 10m deep still water and the
stationary tailwater depth is Sm giving the depth ratio equal to 0.5. The water surface profile along the channel
at (50 + At) seconds is shown in Fig.3. The identical initial condition in a horizontal and frictionless
rectangular channel would give the front depth (constant depth region) as 7.27m and the location of front at
1468m at time (50 + At) seconds. When the result shown in Fig.5 is compared with these data, it is obvious
that the model gives good result in case of trapezoidal channel.

Example 4. Sudden Expansion in Width: This example considers a sudden expansion downstream of the dam
breach section. The channel is rectangular, horizontal and frictionless. The width at 1120m from the upstream
end is increased to 1.5 times the width before that section. The initial depth in the reservoir is 15m and the

tailwater depth is 1.5m giving a depth ratio of 0.1. The time weighting factor, 6 for this example is unity. The
water surface profile along the channel at (40 + At) seconds is shown in Fig.4. When the flow enters the
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expanded width portion, the depth falls suddenly and the flow becomes supercritical. This supercritical flow
continues for some distance before a jump is formed and the flow changes to subcritical. Although the
quantitative accuracy could not be verified, this example demonstrates the proposed model's capability in
handling the sudden changes in the channel width.

Example 5. The Model's Response to Manning's Coefficient : The response of the model to the changes in the

Manning's coefficient is examined for the dam-break problem with a depth ratio of 0.1. The channel is
rectangular and horizontal with a reservoir water depth equal to Sm. The water surface profiles for Manning's
coefficient equal to 0.0, 0.015 and 0.03 at (40 + At) are shown in Fig.5. The negative wave is only slightly
affected by the changes in the Manning's coefficient because of the higher depth in this region. The wave front
is retarded as the Manning's coefficient is increased and, consequently, depths increase. This figure indicates
that the model reasonably responds to the changes in the bed roughness.

Example 6. The Model's Response to Time Weighting Factor ;: The behaviour of the model with different

values of 0 is examined next. The channel is rectangular, horizontal and frictionless. The water depth in the
reservoir is Sm and the depth ratio is 0.1. The model is run with 6 equal to 0.1, 0.6 and 0.9. For 6=0.1, the

model is run at Courant number 0.95 to ensure stability. The computed water surface profiles at (40 + At)
seconds are presented in Fig.6 along with the analytical solution. The accuracy of the model increases as the
time weighting factor is reduced. However, the difference in accuracy is not very significant. It may be
preferred to keep the model implicit while maintaining reasonable accuracy. Therefore, the time weighting
factor equal to 0.6 is recommended.
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6. CONCLUSIONS

A new numerical model developed by Jha et al.2) has been further investigated. The model was applied
to a variety of dam-break problems in different channel geometry, bed friction and bed slope conditions. Dam-
break flood wave propagation in suddenly expanding channel was also simulated by the model. The proposed
model's applicability to all these cases has been demonstrated. The model's response to the changes in the
Manning's roughness coefficient was found to be quite reasonable. The effect of the time weighting factor on
the model performance was analysed and a value of 0.6 was recommended. The model gives good results for
all the cases considered. It can be concluded that the present model can handle the real world problems related
to the propagation of dam-break flood wave in an open channel.
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