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An Implicit Numerical Model Using Split Flux for
1-D Unsteady Flows With Shocks

By Akhilesh Kumar JHA" , Juichiro AKIYAMA™™ | and Masaru URA™™”

An implicit model based on splitting of flux and automatic switching of
space differences is presented to solve one-dimensional unsteady flows
with shocks. The scheme switches from central to upwind if the flow
changes from subcritical to supercritical and vise versa. The model
described here is simple and straightforward to formulate and program.
This model is specially suited to simulate shock propagation and flow
situations where both, subcritical and supercritical flows, are present.
Detail of the model and illustrative examples are also discussed.
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1. INTRODUCTION

The unsteady free surface flows generated by sudden and complete opening or closure of a channel or
by removal of dam from the entire width of the channel can be simulated by one-dimensional model. There
exist many explicit and implicit models capable of simulating one-dimensional unsteady free surface flows and
they are extensively covered in the literaturel.2.3). The problem of simulating unsteady flows becomes quite
involved if the bores or shocks are formed leading to the discomntinuous solution. There are two commonly
used approaches to handle such sitvations. The first approach, known as shock-fitting45) |, isolates the bore
and computes its propagation for one time step independently of the computation in the two adjacent
continuous regions. The second approach, known as shock capturing, does not treat the shock as an internal
boundary and the solution is obtained by integrating the governing equations in conservation form.

In order to correctly handle the bore and the flow situations where both supercritical and subcritical
flows are present simultaneously or in sequence it is necessary to properly implement the directional property
of signal propagation inherent in the hyperbolic nature of the governing equations. In general, schemes based
on central space difference are most likely to fail in such situations because part of the information is
transmitted from the wrong direction. Method of characteristics®.7) correctly applies the concept of signal
propagation but fixed grid finite difference schemes are favoured for computer applications. Besides, extension
of the method of characteristics to two-dimensions becomes too cumbersome to handle. Some finite difference
schemes have also incorporated directional property of signal propagation through various techniques, often
leading to complicated algorithms. For example, spatial differencing may be switched through a control
function in Abbott and lonescu scheme8) whereas, in two-dimensional Leap-Frog scheme differencing based
on flow direction was incorporated®).

The split flux algorithm can handle appropriately the directional property on signal propagation and can
be combined with a suitable finite difference scheme. In this algorithm the flux vectors are split into positive
and negative components based on signs of eigenvalus of jacobian of flux matrices. The upwind differencing
is used for the flow vectors associated with positive component of flux vector and downwind differencing is
used for the flow vectors associated with negative component of flux vector. Explicit schemes!?-11) based on
split flux use two and three step predictor-corrector algorithm involving seven and five grid points
respectively. Beam and Warming!2) scheme, which is an implicit scheme developed for fluid dynamics, also
uses split flux technique but its development is rather complicated.
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In this paper, a simple and easy implicit numerical model based on splitting of flux and switching
technique is newly developed to simulate one-dimensional unsteady free surface flows with shocks. Treatment
of the numerical boundaries are also discussed. For the purpose of demonstrating applicability and validity of
the model, results of the present model are compared with analytical solution for horizontal, frictionless
channel and/or with results of previous numerical studies.

2. GOVERNING EQUATIONS

The governing equations based on the conservation of mass and momentum for one-dimensional
unsteady free-surface flow may be expressed as
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where, h = flow depth, u = velocity , g = acceleration due to gravity; Sp,Sf= bed slope and friction slope
respectively. There are four assumptions basic to the governing equations given above: (1) Water is
incompressible; (2) pressure is hydrostatic; (3) bottom slope of the channel is sufficiently small; and (4)
geostrophic effects and wind stresses are negligible.

Eq.(1) can also be expressed in terms of Jacobian, A of E by noting the following

a—E=A.%ll where, A = 0 T 2)
ox X -u2+gh  2u
Therefore, the governing equations become;
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Matrix A can be written in diagonalized form as

A =L{ (ure)hz-(u-c)Ay Aok } ...................................... “)
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where, ¢ = (gh)!/2 and Ai’s are eigenvalues of A giving the characteristic directions. The eigenvalues are given
by

Aj=u+c AN Ag = U - € oottt (5)
Now, matrix A can be split into two components, positive and negative, by testing sign of the eigenvalues.
This is done as follows,

A=A"+ A where, A; = max(A;,0) and A = Aj A (6)
The governing Eq.(3) can now be written in split flux form as

U AU A U S 0 )
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The reason for the above manipulations is that the derivative associated with positive component of
matrix A can be approximated by backward space difference and that associated with negative component of
matrix A by forward space difference. It may be noted that although Eq.(1) is in conservative form Eq.(7) no
longer remains in conservative form. Euler equations of gas dynamics have the interesting property that

JE ou J(AU)
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because E is homogeneous function of degree one in U. However, E in Eq.(1) is homogeneous function of
degree two in U and, therefore, Eq.(8) is not valid. Consequently, conservative splitting of E is not possible
in the present case. However, conservative splitting may be achieved for continuity equation because element
of E corresponding to the continuity equation is homogeneous function of degree one in the corresponding U.
In the following text elements of matrix A will be refered to as, for example, Aij, referring to the element
corresponding to row i and column j of matrix A. Following this notation and writing continuity equation in
conservation form, Eq.(3) may be expanded from its matrix form to give following equations.
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Continuity:

dh 3(Auh) _ 3(Aruh) '
x + I + Ix O )
X-momentum:
d(uh) oh d(uh) . _
at + Azi—ax + A22 Fye gh(So Sf) =0 (10)

The conservation form of continuity equation ,i.e. Eq.(9), can be verified by simply substituting values of A1y
and Aj; in Eq.(9) and comparing with Eq.(1). Therefore, Eq.(9) and (10) can be written in split flux form as

Continuity:
+ - + -
a—h+ 9(Aysh) + 9(Aq4h) + 9(Ayzuh) + 9(A;2uh) =0 an
ot ox 9x ox ox
X-momentum:
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ot + 21ax + Aziax + A22 ™ + 22—6)( gh(So Sf) =0 (12)

where, + and - superscripts on Ajj indicate positive and negative components of A respectively. The friction
slope in Eq.(12) is assumed to be given by Manning's formula. Thus,
2. u.ly

St h43

where, n = Manning's roughness coefficients.
3. FINITE DIFFERENCE SCHEME

Writing Eq.(11) and (12) in finite difference form is rather straightforward. Time derivatives are
approximated by a forward difference whereas space derivatives are replaced by either a backward or forward
difference depending on whether they are associated with positive or negative components of Ajj respectively.

We make use of the following operators
Aefi=fi -6, Vyfi=1;- 15y and V=g L (14)

and define o = Ax/At, where, superscripts and subscripts in Eq.(14) stand for location in time and space
respectively (Fig.1). Ax is grid interval and At is the time step. The finite difference equation for Eq.(11) and
(12) is respectively written as
L+ o AV [T + Aglar Ot i Vil AT Funp* L + Agl(ar)funy+ 1] = 0 15
Vth1+01 VX (All)h i+ AX (A11)h i+ X(Alz)(uh)L i + X( 12)(1]1])t i = ....(15)
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For subcritical flows, Egs.(15) and (16) implement
central space differencing with the appropriate
weighting governed by eigenvalues given by Eq.(5).
For supercritical flows, the scheme given by Eqs.(15)
and (16) automatically switch to full upwind because
negative components of A are removed by Eq.(6).
Similar sets of finite difference equations can be
written for all nodes along a channel. The resulting
system of equation can be arranged in the form of a
block tri-diagonal matrix with each block of size (2 x
2). This block tri-diagonal system can be solved by
any suitable algorithm. In this study it has been e Ax —
solved by the algorithm given by S.R.
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Boundary and initial conditions must be correctly Distance, x
specified and incorporated into the scheme to obtain Fig. 1 Finite Difference Grid in x-t Plane
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correct results. In the split flux algorithm boundary and initial conditions are easily incorporated. The
compatibility equations valid along each characteristic are obtained and the appropriate one is replaced by the
specified boundary condition. For example, in case of a closed upstream boundary, the characteristic coming
from the wall may be replaced by the condition of zero mass flux through the wall i.e. (uh) = 0 and the depth
may be computed by the compatibility equation along the characteristic coming from inside the domain. Two
types of boundary conditions are considered in this study, closed and open. A closed boundary is a surface of
zero mass flux across it and can be represented by a solid wall. It is assumed that the solid wall has an
orientation always parallel to the sides of square grid and the velocity component perpendicular to the wall is
set to zero. In case of open boundaries various possible boundary conditions may be depth verses time,
discharge verses time or stage-discharge curve. Inflow and outflow boundaries can also be specified as open
boundaries.

4. MODEL APPLICATIONS AND RESULTS

Theé model described above was applied to various illustrative problems to demonstrate applicability and
validity of the model. The model was run at Courant number, C, = 1.0 for all cases. The examples considered
are as described below. '

The first two examples have been taken from Fennema and Choudhryl4). In the first example, bore
propagation in a rectangular, horizontal and frictionless channel as a result of sudden closure of downstream
gate is simulated. The second example simulates propagation of shock, resulting from sudden closure of
downstream gate, in a trapezoidal channel with bottom slope and friction. The first and second examples
consider the bore formed by a subcritical flow stopped suddenly by complete closure of gate. The third
example demonstrates the use of proposed model in simulating a flow situation where both supercritical and
subcritical flows are present. In the last example, the case of bore formation because of sudden opening of the
gate has been considered. Analytical solutions for all but second example are available. Results for the above
examples are discussed next.

Example 1: Shock propagation in a 5000 m fong rectangular channel is analysed (initial flow depth, hp = 6.0
m, Initial velocity, ug = 3. 125 m/s). The flow velocity at the downstream end is reduced to zero at t=0, thereby
forming a shock or bore which propagates in the upstream direction. Results for this example were obtained at
time 354 + At seconds. Solutions obtained by Lambda!®), Gabutti!1) and MacCormack!5) schemes for this
case have been taken from Fennema and Chaudhry!4). Results obtained in the present study is compared with
the results of three schemes mentioned above and analytical solution in Fig.2 and Fig.3.
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Fig.2 Example 1: Results for Rectangular
Channel, No Artificial Diffusion for
MacCormack, Gabutti and Lambda
Schemes.

Fig.3 Example 1: Results for Rectangular
Channel, Artificial Diffusion for
MacCormack, Gabutti and Lambda

Schemes.

As seen in Fig.2, Lambda!®), Gabutti!!) and MacCormack!5) schemes oscillate near the bore when
used without artificial viscosity. These three schemes are second order accurate and require some kind of
artificial viscosity to damp out the oscillations near the bore. The present model does not show any oscillation
near the bore and compares well with the analytical solution as well as with the previous schemes used with
artificial viscosity (Fig.3). Both, the shock speed and shock height, computed by the present model are very
close to the analytical solutions.
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Example 2: The channel is trapezoidal, 5000 m long with side slope m = 1.5, Sg = 0.0000785, and Manning's
n = 0.013. Initially, the channel has uniform flow with a velocity , ug = 1.47 m/s and a flow depth hg = 5.79
m. The flow velocity at the down stream end is reduced to zero at t=0 and the resulting shock or bore
propagates in the upstream direction. Results using Lambda!0), Gabutti!l) and MacCormack!5) schemes for
this case also have been taken from Fennema and Chaudhry!®). Resuits for this example were obtained at time
354 + at seconds and are again compared with that of the three models mentioned above (Fig.4 and Fig.5).
The previous schemes show oscillations near the bore (Fig.4) which have to be smoothed out by artificial
diffusion (Fig.5). The present model compares well with the previous models even in this case. The analytical
solution for this case is not available due to consideration of bed slope and friction.
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Fig.4 Example 2: Results for Trapezoidal Fig.5 Example 2: Results for Trapezoidal
Channel, No Artificial Diffusion for Channel, Artificial Diffusion for
MacCormack, Gabutti and Lambda MacCormack, Gabutti and Lambda
Schemes. Schemes.

Example 3: In this example, the initial flow in the channel of first example is replaced by flow depth, hg =6 m
and flow velocity, up = 15 m/s giving a supercritical flow with Froude number 1.955. The flow velocity at
downstream end is reduced to zero at t = 0. A shock is formed which travels in the upstream direction leaving a
subcritical flow behind. Results for this case were obtained at time 100 + At and 300 + at . These are plotted in
Fig.6 along with the analytical solutions. As is obvious from Fig.6, the present model gives excellent results
for height and speed of the shock.
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Example 4: This example has been taken from Abbout®). The initial condition in the channel is described by 1 m
deep still water throughout the channel. The downstream end is closed. A sudden and steady discharge of 1.0
m3/s/m at time equal to and greater than zero is given as the upstream boundary condition. Result for this case
were obtained at time 400 + at. Fig.7 shows this result along with the analytical solution. Shock speed and
height are well simulated by the present model for this case too as compared with the analytical solution.

In addition to shock heights and speeds, the steep shock front profiles are also better simulated by the
proposed model when compared with previous numerical studies considered. Mass balance was tracked for all
the examples. Mass balance error in the proposed model was found to be less than 1% for all the cases. It may
be remarked that for the first two examples A-scheme!l) and MacCormack!4) scheme gave a mass balance error
of less than 1% but the same for Gabutti!®) scheme was about 5%!3).

5. CONCLUSIONS

The proposed model is simple to formulate and easy to program without compromising the basic
concept of directional property of signal propagation inherent in the hyperbolic partial differential equation.
Besides, the boundary conditions based on method of characteristics are easily incorporated in the present
model. Results of the proposed model for all the cases considered in this study are in good agreement with
analytical solution as well as with solutions obtained from other models. The presented model does not have to
be calibrated for any coefficient. In contrast, Lambdal®), Gabutti!!) and MacCormack!5) schemes require
artificial diffusion!4), the coefficient of which typically varies between 0.5 and 3. The present model, may be
used with confidence to simulate such unsteady flow situations as presented in this study although the formal
accuracy of the scheme is of first order.
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