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Multiple Instability of a Laboratory Stratified Shear Layer
Colm-cille P. Caulfield*and Shizuo Yoshida**

The behaviour of a stratified shear flow with a three layer density
distribution is investigated both theoretically and experimentally. Three
distinct types of instability are observed in accordance with the predictions
of linear theory. The most important parameter for the selection of the
particular type of instability is found to be the ratio R of the depth of the
intermediate density layer to the depth over which the velocity varies,
though any asymmetry in the flow (either in the velocity or density
fields) also plays a role. In general all three instabilities can be observed
simultaneously at markedly different wavelengths and phase speeds for
significant periods of time, although linear theory predicts very different
growthrates.The development of the various instabilities can be simply
and intuitively interpreted in terms of interactions of interfacial waves,
and at finite amplitude each type of instability has a different structure
and mixes the flow in a qualitatively different manner.
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1. Theoretical Introduction

In the immediate vicinity of a river mouth, much mixing takes place due to the sudden
widening of the channel that the river flows along. This mixing between the river and sea
water can lead to a three layer density structure that is then sheared by the salt wedge and
river counterflow.

The first theoretical investigation of a flow with a three layer density field was
conducted by Taylor (1931). This was at the extreme of a three layer density field with
the intermediate layer the same depth as the region of velocity variation. For all Ri, this
flow exhibits overturnings in the intermediate layer, which propagate at the mean velocity
of the background flow. As Taylor states, these overturnings can be thought of as arising
from resonances of two gravity waves, one on each of the density interfaces. This
instability has not been observed experimentally.

We wish to consider a flow with a three layer density distribution, but a priori we make
no assumption about any symmetries between the density field and the velocity field. In
particular, we do not assume that the intermediate layer has density equal to the mean of the
other two layers. We briefly reiterate the discussion of Caulfield (1991), where further
details may be found. We assume that the background flow is as shown in figure 1. The
velocity profile is piecewise linear over a depth d. Four non-dimensional parameters that
describe the nature of the velocity and density distributions are defined as

R i R =a & psr

Rio is the bulk Richardson number. R is a measure of the relative depths of the intermediate
density layer to the depth of the shear layer. The parameter g is the three layer generalisation
of the parameter ¢ used by Lawrence et al. (1991) to quantify the asymmetry in a two layer
flow system. In our work, g is a measure of asymmetry in the location of the density field
relative to the velocity field, while the parameter @ is a measure of the asymmetry in the
distribution of the density field. It is important to note that in general g can be negative,
while R and @ must be between 0 and 1. In our calculations, we assume that |g| + R s 1,
and hence that the region of intermediate density is entirely contained within the region of
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varying velocity. This situation is thought to be the most physically likely. Relaxing this
condition changes the goveming equations slightly, but does not change the results significantly.
By classical normal mode methods of matching pressure and vertical disturbance across
interfaces, we may derive a sixth order eigenvalue equation for the phase speed ¢ =c, +ic;,

cStarcd+act+ascd+aucirasc+as=0 , €))

where the a; are well defined functions of a, the non-dimensional wavenumber (i.e
a=k d/2), Riy, R, g and 6. The flow is unstable if ¢; > 0, with growthrate ac;. As (1) is in
general a sextic, we expect that, in general, the equation will have six, complex roots. The
equation is solved using the IMSL root finding algorithm DZPLRC. In figure 2, the real
parts of these roots (i.e. the phase speed ¢,) are plotted with solid lines against a, for
typical experimental background values of Rig, R, g and 6, namely Riy=1.5, R=0.4, p=0.05
and 6=0.5. Note that for a < 0.23, two of the roots have real phase speed with magnitude
greater than 1, and so do not appear on the graph. Regions of instability correspond to
regions where two of the roots have the same phase speed and wavenumber. In this case,
one of the roots is damped and the other one is predicted to grow. In figure 3 we plot the
growth rates ac;, of the various modes against « for the same parameters as figure 2. Note
that there is a marked difference in the growthrates between the various types of instability.
These growthrates are calculated numerically, directly from equation (1).

The dashed lines represent the various waves that would exist on each of the interfaces if
they were totally isolated, which corresponds to a large « limit. We see that each of the
regions of instability can be thought of as arising from an interaction of these various
waves.

The small real phase instability for 4.57 =a=< 4.8 occurs when there is an interaction
between the internal wave on the upper density interface that is travelling upstream relative
to the background flow, and the internal wave on the lower density interface that is also
travelling upstream relative to the background flow. This corresponds to an R =1 asymmetric
generalisation of the situation first considered by Taylor (1931), and we shall henceforth
refer to this as a K mode.

The two regions of large real phase speed instability (2.55 =as 3.45 and 3.54 sas 4.44)
correspond to the asymmetric three layer generalisation of the modes first considered by
Holmboe (1962), and we shall refer to them as the HP and HM modes respectively. They
are caused by interactions between upstream propagating Rayleigh waves and downstream
propagating gravity waves on the nearer density interface. Both are locally driven.

There is the possibility of two further regions of instability at small wavenumber, if the
Rayleigh waves resonate with the gravity waves on the further density interface. These are
non-local interactions, which we refer to as R modes. For the parameters chosen for figure
2, the full calculations show that the R type modes are unstable for 0.54 sas 0.65. Here, the
large « approximation used in the derivation of the interfacial waves is not, strictly speaking,
valid. Indeed, there is a slight difference between the crossing of the interfacial waves, when
their phase speed as a function of wavenumber is calculated separately for each interface,
and the crossing for the roots of the full equation (1).

In figure 4, we plot the regions of instability predicted by (1) in Rip-a space along with
the resonance conditions for the various wave interactions for g=0.05, R=0.4, and 6=1/2.
Each branch ultimately asymptotes to the appropriate predicted resonance, provided Riy (and
hence o) is sufficiently large.

The relative significance of the various branches varies as the various parameters
change. The most significant effect is that the K mode moves to larger « and smaller
growthrate as R decreases, while the Holmboe type modes start to dominate. Positive
(negative) g, or © < (>) 1/2 decreases (increases) the wavenumber of the HP modes relative
to that of the HM mode, and increases (decreases) the HP mode growthrate. The R modes
are only significant at small R.

Thus, a simple consideration of the various interfaces separately sheds valuable insights

—440—



ac

AM \
i ¥ Ri,
-002¢ V
-006+

U +AU

[

QU —

Figure 1: Model background velocity and
density distributions, for R=0.3, g =0.2
and@ =2/3,
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Figure 3: Growthrate against wavenumber
for the full solutions of (1) for Rip =1.5, R
=0.4, B =0.05 and © =1/2. At instability,
note the presence of damped solutions also.
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Figure 2: Phase speed against wavenumber
for the full solutions (solid lines) of (1)
for Riy=1.5, R=0.4, 8 =0.05 and © =1/2.
Instability corresponds to two roots of (1)
with the same real phase speed. The phase
speeds of the waves on each of the interfaces
considered separately are shown as dashed
lines.
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Figure 4: Stability boundary (solid line) for
R=0.4, p =0.05, ©=1/2. The resonant
conditions for the various interfacial waves
are shown as dashed lines. Note that all the
branches asymptote to the correct resonance
conditions.



on the growth mechanisms, phase speeds and wavelengths of the different types of instability
predicted by the full linear model.

2.Experimental Results

Twenty four experiments were conducted in a flume 8 metres long by 50 cm wide with
a terminal reservoir 2 metres long by 3 metres wide by 10 cm deep. (see Yoshida 1986 for
a description of the tank). The flume (modelling a river) was filled with a saline solution to
a depth of 4 or 6 cm. This initial depth variation had little effect on the subsequent
evolution of the flow. A less dense, though still salty layer, dyed with Sodium Fluorescein
(Uranine or C,; H, Na, O,) was then introduced, until the total depth became 10 cm and the
reservoir (representing the sea) overflowed. A constant flux of fresh water was then
introduced at the upstream end. A constant flux was also introduced to the flexible
impermeable floor of the reservoir, and hence both the lower layer and upper layer had
non-zero velocities, and a roughly linear velocity shear existed across the entirety of the
intermediate dyed layer.

The evolution of the velocity field throughout the whole depth of the tank was tracked
through time using image analysis of dye streaks, calibrated at two points by a laser Doppler
velocimeter (LDV). R varied markedly through one experiment. An advantage of driving
both upper and lower layers was that, after initial transient effects due to the filling of the
tank, the two density interfaces became very sharp. From conductivity measurements, the
interfacial width was found to be o(2 mm). Various values of flow rate, p; and p; were
chosen to allow for variation in background flow parameter values. Experimentally, 1.03 <
Rip=2.83,0.1 sR <0.78,- 0.34 = =<0.19 and 0.25 < @ s0.75. Eighty nine well-defined
unstable structures were observed, by means of a centrally located lightsheet about 50 cm
from the reservoir-flume channel junction, with three qualitatively different finite amplitude
structures. Firstly, especially near the beginning of experiments (when R was close to 1)
disturbances on the two density interfaces locked in phase, the interfaces cusped inwards,
and regions of overturning appeared within the intermediate density region. These disturbances
propagated at phase speeds close to the mean velocity of the flow, and we identified these as
K mode type disturbances (Photogragh 1). In figure 5, we plot observed wavenumber for
these overturnings with the wavenumber region predicted by the modeldescribed in the
previous section to be unstable to K mode type disturbances. We see that there is a very
close agreement, as there is in phase speed, though we do not plot that here. Thus we have
observed the K mode, and we also see the predicted transition to larger wavenumber as R
decreases. The K mode overturnings were found to be strongly two dimensional, and
though the overturnings were longlived within the intermediate layer, very little fluid was
entrained from the other two layers, and hence the K mode did not contribute greatly to the
mixing. This is not entirely a surprise, as Rip is of order 1 here, and thus the mixing effects
of Kelvin-Helmbholtz type billows is thought to be severely suppressed.

Also observed is a cusping upwards of the upper density interface, associated with the
presence of a region of overturning in the upper layer. These disturbances typically have
phase speed less than, but close to, the maximum velocity of the background flow. In figure
6, we plot observed wavenumber for these overturnings with the wavenumber region
predicted by the model described in the previous section to be unstable to HP mode type
disturbances. Once again, we see that there is a very close agreement, and now we also see
the predicted transition to smaller wavenumber as R decreases. Though not plotted here,
near the end of the experiment, as R became very small, we occasionally observed very
widely spaced cusps, with substantially smaller, though still positive, phase speed. These
corresponded well with the predictions for RP mode.

Finally, and analogously to the HP mode, downward cusping of the lower density
interface was found to be associated with the presence of a region of overturning in the
lower layer. In figure 7, we show that the wavenumber of these disturbances agrees well
with the model predictions for HM modes, and thus these overturnings should be thought of
as finite amplitude manifestations of the HM mode. Once again, for very small R, RM modes
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Figure 5: Wavenumber of observed K mode
overturnings (circles) for various R. The
error bars represent the theoretical
predictions of (1), taking into account the
other applicable parameters. Note the
transition to larger alpha as R decreases.
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Figure 7: Wavenumber of observed HM
mode overturnings (circles) for various R.
The error bars represent the theoretical
predictions of (1), taking into account the
other applicable parameters. Note the
transition to smaller alpha as R decreases.
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Figure 6: Wavenumber of observed HP mode
overturnings (circles) for various R. The
error bars represent the theoretical
predictions of (1), taking into account the
other applicable parameters. Note the
transition to smaller alpha as R decreases.
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Photogragh 1: K mode type disturbances.
s, 1,i,and b correspond to surface, upper
interface, lower interface and bed,
respectively.



were observed.

The two Holmboe type modes often had significant three dimensionality early in their
evolution, and were the major cause of mixing of within the flow. In particular, the mixing
associated with HM modes was often sufficiently vigorous for another, fourth, layer to
appear with density intermediate between p; and p,.

When R ~ 0.3, all three instability types are observed simultaneously, for significant
periods of time. However, depending on the values of6 and g, linear theory predicts that
one of the Holmboe type modes should totally dominate the evolution, and have a growthrate
more than ten times that of the K mode. The observed behaviour may be due to a resonant
triad of the three modes, whose conditions (namely ax = agp+ agm >, and cx = cap+ cau) are
satisfied over a wide region of parameter space for the three linearly unstable modes.

3.Conclusions

A simple linear model well predicts the wavelengths and phase speeds of several forms
of instability observed in a stratified shear flow. However the flow is susceptible to multiple
simultaneous instabilities even when the predicted growthrates of the various observed
modes vary by more than one order of magnitude. Thus this simple flow,that is likely to
occur at river mouths, is explained qualitatively by linear theory. A nonlinear analysis must
also be conducted to investigate the multiple modal structure at finite amplitude, as well as
the (observed) different mixing effects of the instabilities.
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