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EFFICIENT AND ACCURATE NUMERICAL SCHEME
FOR ONE-DIMENSIONAL INFILTRATION

By Le Dinh HONG*, Juichiro AKIYAMA** and Masaru URA***

An efficient and accurate finite-difference scheme is
presented for solving the one-dimensioral Richards’ equation.
The numerical model is based on the "mixed’ form of Richards
equation which ensures the mass conservation. The Newton-
Raphson scheme is incorporated in order to effectively handle
the nonlinearity of the equation. An "updating’ coefficient
is introduced to further enhance the convergence rate. The
effect of the updating coefficient on the required number of
iterations per time step was examined as well.

Keywords: infiltration, Richards’ equation, finite difference.

1. INTRODUCTION

Richards’ equation is the commonly accepted basis for detailed studies of water movement
in saturated-unsaturated soils. Three standard forms of Richards’ equation may be
identified as the " ¥-based’ form, the ' & -based” form, and the 'mixed’ (conservative)
form. Solutions using the ¥ -based” formulation are known to produce unacceptably large
mass balance errors!’, meanwhile the ~ 9 -based” formulation is not suitable for combined
saturated-unsaturated flow or infiltration into layered soils?’. The ‘mixed” form of
Richards’ equation shows perfect mass balance in numerical calculation!:3’ and is
applicable for all practical situations.

Numerous analytical and numerical solutions of Richards’ equation have been developed
over the past 30 years. Analytical solutions are applicable to highly simplified systems.
They are not well suited for the more complex situations normally encountered in the
field, but may prove to be useful for verification of numerical solutions. Of numerical
calculations, the finite element techniques do not prove to have any advantage for one-
dimensional simulations over the finite-difference techniques!-#’. The finite-difference
method , therefore, is frequently employed.

As Richards’ equation is a nonlinear Fokker-Planck equation, proper linearization
procedure has to be introduced. For this reason, the conventional iteration methods such
as Newton-like and Picard method are widely used. For highly nonlinear problems, the
Newton-Raphson method is known to be more efficient in computation than those methods®- ®’

From the viewpoint of efficiency of computation, accuracy of mass conservation, and
flexible applicability to saturated-unsaturated problems, Richards’ equation in the
‘conservative’ form is schematized by the finite-difference method, incorporating the
Newton-Raphson scheme. Additionally, an "updating” - coefficient is introduced to further
enhance the convergence rate of the Newton-Raphson scheme. Efficiency and accuracy of the
proposed numerical scheme are quantified by making direct comparison with existing
numerical methods.
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2. THEORY

The one-dimensional continuity equation is given

by -
860/3L=-39/FL ot 1) P
The flux of water q is expressed as Darcy's law: , | i=p-1
»-1/2 ——
q=-K(3T/32~1) iiiviviiiiinnnnnan.. (2) < iEm
o+l/2 —
where ¥ (z,t) is the pressure head; 6 (¥) the | i=mil
volumetric moisture content; K(¥) the hydraulic ]
conductivity; t the time; z the depth oriented F—
positively downward. ©| =N
Combining Egs. (1) and (2) vyields the one-
dimensional Richards’ equation in the 'mixed” form: Fig. 1. Finite-difference grid.

360/0t=4a[K(a¥/8z-1)/dz ........ (3

Approximate finite-difference form of Eq. (1) for a typical cell m (Fig. 1) at time
t" + wAt, where 0 £ o £ 1, is given by

(027 = /At = = (Gue1,2 = Gme172)/ B2 o ere et eeireeeesenratenennnanenns )

where 6 . denotes the moisture content of cell m; Qu+i 2 and &x-,. 2 the average fluxes
across the interfaces m+1/2 and m-1/2 during the time step At, respectively; Az the
nodal spacing; At = t®*! - t® the time step; n previous time level; n+tl current time
level.

The average flux over the period At across the interface m+1/2 may be determined as

Gm+1/2 = wq.',‘,Ii/; + (l-w)q:wx/z ................................................. (5)

where wis a time-weighting coefficient, @ = 0, 0.5, and 1 coresponds to the explicit,
Crank-Nicolson, and implicit schemes, respectively.
The finite-difference form of Eq. (2) written at the interface m+1/2 is

Quitrz = = Kavroz [(Famer = Wad/AZ = 1] Lt it iee e naeanns (6)
Substituting Egs. (5) and (6) into Eq. (4), one obtains
wAt/Az? [- Kall e (TRil - U277 - Az) + Kall . (¥2"' - ¥ii - Aap)]
+ O - Bt (1m0)AL/AZ [Ahriz = Gaciz] T 0 i (M

Since K and & are nonlinear functions of ¥, Eq. (7) needs to be linearized. Denoting
the left-hand side of Eq. (7) as a function R, Taylor expansion of Eq. (7) about an
assumed solution yields

Rertortl = Rotlor 4 B AR/AW T TS W, 2 0 e e (8)

where j = m-1, m and m+1; r denotes the iteration level; &Y = Yrrl-rot _ aprrl.r gpe
the unknowns to progress from the known values at iteration r to the next unknown values
at iteration r+l at the same time level n+l.

Using the arithmetic average for the internodal hydraulic conductivities, the linearized
form of Eq. (8) written for a particular cell m (Fig. 1) is given by

R B N LA O ¢ I L | U (9)
where
Eath "= - wAt/Az? [Kell s - DRIl "(¥a™ " - wiIl' " - AZ)/2] il Q10)
Far" "= Ca™ "+ wAt/Az? [KRIL 2 + DRV (RN T - Wil T - Az)/2
+ R - DR (Rl T - WETY T - AZY2) i (11)
Gt T = - wAt/AZE (KRl s + Dall (AL T - WA T - AD)/2) e 12)
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Hith' "= 92" 7 - 82+ (1~w)At/Az (Qe+1-2 = Qu-1.2)

+ wAt/AzZ? [Kof s (W' T-wrtl T-Az) - Katlos (Rl -t T-AD) L. (1D
where C = d6/3V¥ is the specific moisture capacity; D = dK/d¥ the derivative of the
hydraulic conductivity with respect to pressure head.

Eq. (9) expresses the exact mass conservation of cell m in finite-difference form as

S ¥oy, 0¥, and & ¥,y approach zero. If we simply assign ¥* to ¥**'-° in Eq. (9) at
the start of each new time step (r = 0) as has been commonly done, the following equation

is obtained;
H:+l'o = At/AZ(q.:+1/z - q:—l/z) - N (14)

As H is required to approach.zero in order to obtain a converged solution, an "updating’
coefficient » will be introduced at the start of each new time step. Since the Newton-
Raphson iterative scheme 1is strongly convergent ( second-order convergence rate ),
appropriate estimation of initial solutions could further enhance the convergence rate.

The discretization procedure involved yields the following iterative algorithm for
advancing the approximate solution from time t = nAt to time t = (n+1)At.

Step 1: Let n + 1 be replaced by n, and at the first iteration level (r = 0) the value
of o™ % is set by ¥a + »(¥5 - ¥27), in case of infiltration
LR G A

Step 2: Compute the residual Hi™' ",
If max | H2*™' " | { &, then accept the values of ¥2™' ", Go to step 1.

Step 3: Compute the coefficients of Eq. (9), then solve for & ¥a.

Step 4: Let ¥2™"' "+ §¥, = ¥i™" "' then go to step 2.

In the preceding equations, m = 1 to N, in which N is the number of cells in the
considered domain, and &= 10-° (L3/L3) the convergence tolerance.

3. ILLUSTRATIVE EXAMPLES

The soil characteristics, initial and boundary conditions, discretization parameters,
and convergence tolerance used by Cooley” and Celia et al.!’ are summarized in Table 1.
For the purpose of direct comparison, those parameters were employed in the present
simulation if not specified otherwise. The nodes in the proposed scheme are centered in
cells (Fig. 1), and hence only the second half of the first cell is included in the flow
domain.

Table 1. Calculation conditions.

Example 1: Cooley” Example 2: Celia et al."’

6= 6.5.4/1¥}|)°>2¥L -5.4cm 6.,- 6.,
e(¥)= 80, + ——————

K= K, (5.4/1 ¥ |)*° ¥ -54cn [1+ (al¥])e]

6= 6, =0.52 Y2 -5.4 ca {1 -(Cal¥TI) 1+ (al|F|)]) "}
K(¥)= K,

K= K, = 3.125 en/hr  ¥2 -5.4 co [14+ Cal¥])e)=2

¥(z,t=0) = -130.54 ca a =0.0335, n=2,2a=1-1/n ,

¥ (z=0,1)0) = -5.4 cm ¢, =10.368, 6. =0.102, K, = 0.00822 cm/s

¥ (z=49,t)0) = -130.54 cn ¥(z,t=0) = -1000 cm

Length of column L = 49 cm T (z=0,t)0) = -75 ca

Az=1cm At =0.1hr ¥ (z=70,1)0) = -1000 cm

Convergence tolerance &= 0.001(cm) | Length of column L = 70 cm

Time-weighting coefficient w =1 Az = 2.5 cn, At =100 s, 3600 s
Convergence tolerance & = 10~%(sec™!)
Time-weighting coefficient w = 1
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(a). Example 1 (One-Dimensional Vertical Infiltration into Moderately Dry Soil)

This example was used as one of the simulations by Cooley”’, in which a subdomain finite
element technique was employed to solve the W-based Richards’ equation. Cooley”
developed an empirical relaxation scheme for updating nodal pressure head values to
enhance the convergence rate. His scheme was later adopted by Huyakorn et al.®’ and
Kaluarachchi and Parker®’.

Fig. 2 presents the profiles of moisture content normalized by the saturated moisture
content obtained by Cooley”™ and our simulation. At time 1.2 hr, Cooley' s?’ results lag
slightly behind the present results, but at time 3.05 hr the difference increases
considerably. Fig. 3 reveals that at time 1.2 hr the final shape of the front has already
established. In this case, the theoretical downward velocity of the front corresponding to
a hydraulic gradient of unity is K./(0.52 - 0.275) = 12.755 cm/hr, where 0.52 is the
saturated moisture content and 0.275 is the initial moisture content. The computed
velocity given by Cooley™ is 12.432 cm/hr which is 2.53 % lower than the theoretical
velocity. The computed velocity by our simulation is 23.75 cm/(3.05-1.2) hr = 12.838 ca/hr
which is 0.65 % higher than the theoretical velocity. This comparison demonstrates that
the results obtained by the present wmethod is more accurate than those by Cooley's
model” . In our calculation, the mass balance error MBE, which is defined as

MBE = [ Weum = Wen | /Meum covineiinneiiiineiiiieiiiiriiiiirerererenaneerannanss (15)

is less than 1x10-%, where W.., is the net cumulative flux into the computed domain; Wcn
the change of water in the computed domain.
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Fig. 2. Comparison of water saturation Fig. 3. Collapse of water saturation
profiles computed by Cooley profiles by shifting the 1.2 hr
and our simulation. profile a distance of 23.75 cm.

Fig. 4 presents the number of iterations per time step required in the present model and
the effect of the updating coefficient # upon the convergence rate. It must be noted that
Cooley’s”’ model required at least 53 iterations per time step.

This large difference in number of iterations
between the two models could be explained: (1)
the derivatives of hydraulic conductivity with
respect to pressure head were ignored in
Cooley’'s model”, as the result the theoretical
second-order rate of convergence was lost; (2)
for the Y-based form of Richards’ equation,
wore iterations per time step is required to
obtain the same convergence tolerance than
those required by the ‘mixed’ form. This may be s
due to the difficulty in evaluating the 00 02 ot w08 o e
appropriate specific capacity terms in the ¥- Fig. 4. Effect of the updating
based form of Richards’ equation to guarantee coefficient # upon the
the mass balance. convergence rate.
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(b). Example 2 (One-Dimensional Vertical Infiltration into Dry Soil)

The numerical simulation of infiltration into very dry soils is of considerable
interest. Because the strong nonlinearity of functions K(¥) and 6 (¥) as well as the
very steep wetting front render usually the solution difficult to be obtained.

Celia et al.'s'’ model is termed as the modified Picard or Newton-like scheme. They used
the ‘wmixed’ form of Richards’ equation, but ignored the derivatives of the hydraulic
conductivity with respect to pressure head.

o 10
—o0es Celia et al.
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Fig. 5. Comparison of pressure head profiles Fig. 6. Number of iterations per time step
computed by Celia et al. and our for At= 100s required by Celia et
simulation at time t = 24 hr. al.’s method and our simulation.

As shown in Fig. 5, there exists good agreement in the pressure head profiles between
Celia et al.’s!’ and our result, keeping the mass balance error MBE less than 1x10~% in
our simulation. It appears that for infiltration into dry soils the time step does not
have large influence on the shape of the wetting front as long as the solution for each
time step is converged. A similar observation was reported by Kabala and Milly'®’. On the
other hand, for infiltration into wet soils, the wetting front diffuses more as a time
step At increases (the results are not shown here due to space limitation). In Fig. 6,
the number of iterations required per time step during the first 20 time steps is plotted.
The simulation was carried out using At = 100 s and a convergence tolerance of & = 10°%
(sec™*) as used by Celia et al.'’. In our simulations, a minimum of two iterations per
time step was employed in order to obtain a stable numerical solution. This figure
demonstrates that the Newton-Raphson wmethod is more effective in convergence than the
method used by Celia et al.?’.

Fig. 7 presents the effect of the updating coefficient » upon the convergence rate. All
simulations were carried out under the conditions Az = 2.5 cm and a constant convergence
tolerance of & = 107% (L?/L3). Fig. 8 presents the same results normalized by the number
of iterations calculated with coefficient #» = 0. It can be seen that the coefficient 7
does not have large influence on the convergence rate for small values of At. This is due
to the fact that only 2 or 3 iterations per time step are required so as to obtain a
converged salution. However, it is apparent that the coefficient # improves substantially
the convergence rate when At is larger.

4. CONCLUSIONS

1. As has been observed by Allen and Murphy®', for the ¥-based form there seems to be no
simple method of choosing the time level between the interval [nAt, (n+1)At] to estimate
the value of the specific capacity terms which guarantee the global mass balance. For this
reason, Kaluarachchi and Parker®’ investigated various means of determining the specific
capacity terms and their effects on the mass balance accuracy. Meanwhile, Huyakorn et al®
proposed a chord-slope method to evaluate the specific capacity terms. In this study, the
conservative form of Richards’ equation, which ensures the mass balance, is used to
circumvent such a difficulty.

2. The transformed Richards’ equation such as the hyperbolic sine transform!!’ appears to
provide no additional advantage in simulating infiltration into dry soil, because this
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particular situation can be simulated accurately by the conservative form of Richards
equation.

3. The Newton-Raphson scheme for solving the conservative form of Richards’ equation is
more efficient in computation than the Newton-like or modified-Picard schemes.

4. The effect of the updating coefficient #» on the convergence rate is strongly
influenced by time step, nodal spacing and initial conditions, and weakly affected by soil
characteristics and boundary-condition types. It is, thus, difficult to define an
optimized value of the updating coefficient. However, » = 0.5 may be used to at least
enhance the convergence rate of the proposed scheme.
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g
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Fig. 7. Effect of the updating coefficient Fig. 8. Relation between normalized
7 upon the convergence rate, sum sum of iterations and the
of iterations evaluated at time updating coefficient #.
t =24 hr.
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