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Flow in a river confluence with a levee
predicted by three-dimensional model

Nobuyuki Tamai, Professor
S. B. Weerakoon, Grad. Student
Dept. of Civil Engg., University of Tokyo.

A three-dimensional computational model, based on finite
volume method and k-& turbulence model, for predicting steady
state confluence flow is presented. The confluence region 1s
covered by a curvilinear grid which is generated numerically
using a quasiconformal mapping method. The computation is done
in the transformed domain which is a parallelipiped. The
computed results agree well with the experimental results. The
performance of a levee which facilitates two streams to mix
gradually and thereby to reduce the superelevation and the
strong secondary flow in the main stream, is demonstrated.
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1. Introduction

The confluences, where the tributaries join with the main streams
are common in river systems. The flow situation in a confluence is very
complex in three dimensions with the secondary flow, separation and
strong mixing of two streams. It has been understood that the strength
of those phenomena depend mainly on flow ratio, confluence angle and
Froude number (Mosely). The levee is thus constructed in a confluence
in order to reduce the effective confluence angle and thereby to
facilitate gradual mixing. Three-dimensional model for predicting
the flow in a confluence with confluence angle of 30 degrees is given
by Tamai & Ueda. However the model is restricted for small confluence
angles due to the restraints in the grid system adopted in the
computation. On the other hand, the role of a levee is more important
when the confluence angle is large. Therefore, this paper describes a
three-dimensional computational model which employs numerical grid
generation technique "and hence capable of predicting the flow in an
arbitrary confluence. The model is based on the finite difference
solution of the time-averaged Navier Stokes equations, continuity
equation and the standard k-& model. The streamwise diffusion 1is
neglected in the model as partially parabolic flow computation
procedure is adopted.

2. Grid Generation

A quasiconformal mapping method, in which the boundary
correspondence 1is given and remained unchanged and thus coordinate
lines can be distributed at required spacings, is employed to generate
the smooth and closely orthogonal curvilinear grids. Upon the condition
that bed level variation is smooth and not large we can generate the
grid in two-dimensional flat surface and then can be extended to the
third dimension by the interpolation according to the required
spacings. If ¢’ y® and 2. x° are the Cartesian and curvilinear
coordinates respectively, then starting from the orthogonal relations,

(%5) = D(%x‘”—;) (1)
(%%) = *D(gi’;) (2)

following two equations can'be derived.
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where D is the aspect ratio given by D = gll
22
With D explicitly given through an initial guess for y‘.yz, the

solution to the elliptic system of equations (3) and (4) under the
specified spacings of grids at the boundaries as boundary conditions
maps the square meshes in the transformed region onto the curvilinear
meshes 1in the physical region. D is computed from new coordinates of
and smoothed over the whole region. The smooth and closely orthogonal
grid is then obtained by repeating the sweeps for the solution several
times with new values as initial guess for y‘,y?. Part of grid obtained
in this method 1is shown in figure(2).

The transformation relations such as metric tensor, the Christoffel
symbols are computed numerically in order to transfer the three-
dimensional confluence reglion with curvilinear meshes to a
parallelipiped with square meshes.

3. Governing equations and turbulence model
For incompressible flows, continuity equation and time-averaged
Navier Stokes equations applicable 1in nonorthogonal curvilinear
coordinates can be written in the following tensor form using
contravariant velocity components.

1
Ut,=0 (5)
(U‘U’)U =f‘-%P,‘+(uUfj—u'uj),, (6)
where U' = contravariant component of mean velocity, u'= contravariant
component of turbulent velocity, ; = covariant derivative, p =
piezometric pressure and v = kinematic viscosity. Eddy-viscosity

concept and the standard k-& model are used to compute the turbulent
stresses. The related equations can be written as,

= (0 )-2e

<kUj)‘f - (:'_:k'j).j+u‘<Ui=j+U{t)Ufj‘€ )]
(er):j = (.Zf,E,j).j‘f'C;%U;(U‘:J+U{1>U:j-cziki ()
ol 9

¢,=0.09, c¢,=1.44. ¢,=1.92, 0,=1.0, o,=1.3

where k= turbulent kinetic energy, €= dissipation rate and v:=eddy
viscosity.

4. Solution procedure

The equations (5) to (9) are written in the conservative form and
integrated over the finite volumes in the transformed plane to form the
close set of descrete equations. The hybrid scheme is used to evaluate
the coefficients in the cross-stream and is assumed to be numerically
accurate because the velocity vectors are closely in 1line with the
numerical grid lines. The partially parabolic flow assumption is made
here 1in order that downstream marching solution 1is possible. The
pressure correction equation was derived from equation (5) while
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considering the the effect of all three pressure gradients, risen due
to the nonorthogonality of the grids, on the velocity correction terms.
A procedure similar to the SIMPLE algorithm is then used to obtain the
converge solution by making sweeps from upstream to downstream.
Furthermore, wall function method is employed as boundary condition
near the wall. The water surface is considered as a symmetrical rigid
1id in the computation thus water surface elevation difference 1is
considerd only indirectly by the pressure gradient terms.

Before employing to present complex flow situation, the performance
of the model was checked by applying to simple confluence flows(Tamai
and Weerakoon).

5.Results and discussion

The model is applied to predict the three-dimensional flow in the
confluence of 60 degrees, having rectangular cross sections and a
training levee studied experimentally by Tada. The configuration of the
confluence is illustrated in figure(l), The side walls of the channels
were nominally smooth. The discharge in the main channel was 1.646 1/s
and that of branch was 1.366 1/s. The down stream controll and the
upstream feeders of the channels were located so that their effect on
the confluence is neglegible.
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A total length of 450cm while 300cm being after the confluence was
considered 1in the flow computation. The fully developed flows were
input at the upstream and the flow was assumed to be developed at the
downstream as boundary conditions. The comparison of the 1longitudinal
component of the velocity vector drawn in streamwise vertical sections
is shown 1in figure(3), where h is the depthwise coordinate measured
from the bottom and X,Y are measured as indicated in figure(2). The
velocity scales are the same for each curve and the 9 curves given in
each figure corresponding to the different values of X progressing
downstream as given with the figure caption. As can be seen from
figure(3), the prediction agrees quite well with the measurments,
except the very low velocities appear near the downstream corner of the
geometric junction. However, this is the location where the flow
separation is very likely to occur at the confluence in which case the
model cannot be expected to perform well due to the fact that the model
is based on partially parabolic flow assumption. The absence of flow
separation in this case can be thought mainly due to the presence of
the levee. Also, a small over estimation of the velocities is shown 1in
general throughout this developing flow region. This discrepancy rises
to ensure the continuity of the flow, because the actual water depths
in this region are greater than the imposed constant water depth
corresponding to the actual downstream water depth. Although this is a
consequence of the symmetrical boundary condition imposed at the top
surface the actual water depths can be calculated through the pressure
gradient(Tamai and Ueda). The comparison of water depth variation with
experimentally obtained values show satisfactory agreement as depicted
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in figure(4). Figure(5) shows piezometric pressure contours which
correspond to the water surface 1level variation in the region.
According to these figures, the superelevation of the both flow
channels towards the levee is prominent. If the levee is absent, strong
mixing will occur between two flows and thus the superelevation in the
branch channel which is substantial at the present case can be expected
to be smaller, but on the other hand the superelevation at the main
channel towards the right bank can be expected to be larger. Figure(8)
shows the velocity vectors in plane sections at near bottom and near
surface. Figure (7) shows the secondary flow vectors in lateral
sections. The sections are as shown in the figure(2). The spiral
motions which counter rotates appear in two channels at the bothsides
of the levee. These two vortexes appear for the reason of continuity as
the acceleration and decelaration of the fluids occur in their curved
paths. The vortex in the branch channel which is comparatively large is
shown to has not decayed completely before two flows join at the end of
levee. The presence of levee has blocked the strong mixing of the flows
at the Jjunction and thus reduced the secondary flow 1in the main
channel. On the other hand it has blocked momentum transfer thus
resulting a slow decaying strong vortex in the branch channel. The
training levee has made the mixing of two flows gradual as flows
departs the levee thus considerably reduced the superelevation in the
main channel appears in confluences without levees (Tamai and Ueda).
The figure(8) shows the velocity isovels of the sections. The strong
secondary motion has caused the depression of the maximum velocity
below the water surface as seen.

6.Conclusions

a). A computational model based on the standard k-& turbulence model
has been presented for the confluences with no separation. The
agreement of the computed results with experimental results is
generally good.

b). The grid generation method adopted can be used to tackle an
arbitrary confluence and is flexible in spacing of grids.

c). The performance of a 1levee has been demonstrated. The 1levee
prevent strong mixing and facilitates two streams to mix gradually.
Thereby superelevation in the junction and the strong secondary flow in
the main stream are considerably reduced.

Aknowledgements
The authors are grateful to H.Tada for providing experimental data.

References
1). Demuren, A.0. and W. Rodil : Side discharges into open channels:
Mathematical model, J. of Hyd. Engg., ASCE, vo0l.109, No 2, pp.
1707-1721, 1983.

2). Mosely, M. P. : An experimental study of channel confluences, J.
of Geology, Vol.94, pp.535-562, 1976.

3). Patankar, S. V. : Numerical Heat Transfer and Fluid Flow,
Hemisphere, N.Y., 1980.

4). Rodi, W. : Turbulence Models and their Applications in

Hydraulics, Monograph, IAHR, Delft, The netherlands, 1980.

5). Tada, H. : Experimental report, Osaka College of Technology, 1987

6). Tamai, N. and S. Ueda : Prediction of flow behavior at river
confluences by the k-e model, Proc. of the 3l1st Japanese conf.
on Hydraulics, pp.437-442, 1987.

7). Tamai, N. and S. B. Weerakoon : Three-dimensional confluence flow
computation using numerically generated grid, Proc. of the 43rd
annual conf. of JSCE, pp. 442-443, 1988.

8). Thompson, J. F. and Z. V. A. Warsi : Boundary-fitted coordinate
systems for numerical solution of partial-differential
equations- A review, J. fo Comp. Physics, 47, pp. 1-108, 1982.

—282—



