33MKBE M SR LE 198942 A

FLOOD ROUTING IN STEEP STREAMS

By

Chin-lien Yen

Department of Civil Engineering

National Taiwan University
Taipei, Taiwan, ROC

SYNOPSIS

Flood routing techniques employing numerical models, especially those based on
implicit finite difference schemes, have now been reasonably well accepted in
practice. However, when they are applied to steep natural streams with slopes
gréater than 0.0005, the problem of numerical instability often arises, resulting
in break-downs of numerical models. Major factors affecting numerical stability
include streem slope, cross-sectional variability, tributary confluence, boundary
conditions and initial conditions. The present article reviews and summarizes some
of the research results obtained by the author in recent years. Stability criteria
under various influencing parameters are given, and applications to field cases in
Taiwan are also illustrated in this article.

INTRODUCTION

Flood routing 1is a technique to determine flood hydrographs along a river
reach as the flood wave travels through. This information is needed for dealing
with a variety of problems, including: (i) evaluation of past flood with incomplete
records, (ii) determination of flood stage for flood control scheme under design
flood, (iii) forecasting of floods along a river reach, and (iv) assessment of the
effects of water development project on downstream flood flow.

Basically, the flood routing technique involves solution of a set of nonlinear
differential- equations governing unsteady open channel flow. More than a century
of research seeking methods of solution had set the stage for their applications to
practical problems. This was realized when digital computers became available in
1950's (4). However, there are still a number of difficult problems often encou-
ntered in practical application of flood routing models.

Since the initiation of using digital computer to solve the govering equations
by finite difference methods for flood routing, a great number of numerical models
has been developed. However, there has not yet been any single model that is far
superior to others because all the finite difference schemes employed are of
second-order in accuracy. Despite of this, there are overall advantages in the
implicit finite difference (IFD) models (1). The IFD models are definitely faster
than those employing other numerical schemes if the stream slope and Courant number
are ‘sufficiently small. For steep streams with Courant number in the order of
unity, there is practically no choice among models. Quite often streams having
rather steep slopes may lead to instability in numerical models, resulting in
break-down of flood routing. The problem of numerical instability 1is especially
serious in the case where stream slope is large and cross-sectional variability is
high. Most rivers in Taiwan and maybe some of those in Japan too fall into this
category. According to earlier studies (5,6), channels with slopes less than
0.0005 have no problem of numerical instability. Hence, streams having slopes
greater than 0.0005 are defined as steep streams in this article.

Another distinct aspect of Taiwan's rivers is their frequent tuributaries,
-associated with steep terrain. The junction of a tributary with its main stream
brings mutual backwater effects that may place a great demand on computer resources



and can also cause numerical instability in their solution.

The remainder of this article is devoted to the treatment of the above-
mentioned problems associated with flood routing in steep streams. It 1is hoped
that this can bring some helpful suggestions to engineers and researchers as well.

GOVERNING EQUATIONS

Flood routing models may be classified into two general types; namely,
process-type and lumped-type. The former takes into considerations the physical
processes of water flow in river while the latter employes conceptual approach with
simplified mathematical representation largely neglecting the physical processes.
The following discussion is limited to the former case.

The complex phenomena of flow in natural river are generally simplified by
considering the flow as one-dimensional, and the loss of energy as being properly
represented by friction coefficient. With some additional assumptions (3), the
governing equations, also called de Saint Venant equations, for gradually-varied
open chennel flow are written as fallows:
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where Q = discharge; A = cross-sectional area ; t = timej x = distance along the
mean direction of flow; g = gravitational acceleration; S, = stream bed slope; Sr =
nZQz/(ARZ/S; y = water depth; n = Manning's roughness; and R = hydraulic radius.

In the above equations, Q and y are the unknown variables to be sloved for.
There is no general analytical solution for this system of nonlinear equations, but
numerical solution may be obtained if appropriate initial and boundary conditions
are given. For the present article, the following hydrograph Q4(t) is imposed at
the upstream boundary:

Q1(t) =Q,+ (1/2)(Qp— Q)1 - cos(2nt/T)] (3)

where Q, = base flow; T = duration of hydrograph; and Qp = peak inflow. The base
flow Q, is also regarded as the initial condition. At the downstream boundary a
depth-discharge rating curve is given by

Q = ayb (4)

n
in which a and b are constants for a specific site.
NUMERICAL MODELS

Numerical schemes for solving the governing equations with the boundary and
initial conditions may be divided into four groups; namely, (i) finite difference
schemes for characteristic equations with natural grids, (ii) finite difference
schemes for characteristic equations with rectangular grid, (iii) explicit finite
difference schemes for de Saint Venant equations, and (iv) implicit finite diffe-
rence schemes for de Saint Venant equations. 1In each of these groups, a number of
models have been developed for flood routing. The models in group (i) wusually
reguire a great deal of interpolation work to obtain results at given locations.
Simplicity 1in computer programming tends to bring favor for models in groups (ii)
and (iii), but the size of time step in these cases is severely limited by Courant
condition.

Many investigators (1,3,12) have shown that the models in group (iv) are the
most suitable for flood routing because their stability and accuracy are generally
better than other schemes. For slowly-varying flow with small stream slope, this
is quite ture. However, for fast-varying flow with large stream slope, numerical
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stability often becomes a problem.

The discretization of Eqs. ! and 2 by IFD scheme yields a set of simultaneous
algebraic equations containing all the unknowns at all the nodal points. For this
article the IFD developed by Priessmann is adopted and is given as follows (2,3)
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By substituting Eqs. 5 into Eqs. 1 and 2, and dropping the higher order terms,
one can obtain two linearized equations for each subreach of the system (4):

a Az +bAQ =c Az +dAQ + e,
B N 51 A S - A A A BN

i+
(6)
a'dz +b'AQ, =c'hz, +d'AQ + e
J"j+1’JQJ+1 J R
w?ere Az = z3+1— zﬁ 3 z = water surface elevation ; AQ5 = Qj+1- Qj 5 and aj,...ejs

a; ... and e} are functions of discharge and water depth at previous time. ~With
(&—l) subreaches, a total of 2(N-1) equations are established. There are 2N
unknownsj namely, Az -, Az, ...0zy, 8Q,8Q7,...0Qy . Upstream and downstream
boundary conditions provide two additional equations needed for the solution of 2N
unknowns.

STABILITY CRITERIA

The advantage of this IFD scheme is that ¢t is not subject to the strict
restriction of Courant condition. Although stability analysis by linear theory
shows that this scheme is unconditionally stable, numerical experiments have clear-
ly indicated that several factors can influence numerical stability (2,6,7). A
further discussion on this matter is warranted. The linear theory often fails in
those situations where the stream slope, the variation of cross-section and the
effects of boundary conditions are large. There has been a systematic effort in
the past decade to investigate this problem, by using the technique of numerical
experiments (2,6,7,8,9,10). The major results of these studies are summarized in
the following:

Single Stream

For a stream without any tributary, one can organize the finite difference
equations and boundary conditions into dimensionless form to obtain control para-
meters which may be placed in the following functional relation (9)

p . =f, (8B , F, Py, Py) : N
where Py = So x/yp; F=qp//8Y} ; Py = |yb/$,'”; Py = (at/ax)(q, /y,); 8By = AB/B;
AB=variation of stream width between two mneighbouring sections} B = stream width,
S, = stream bed slope; Yo = uniform dep?h for 9p3 Gp = peak inflow per unit width;
Ax = spatial step required for numerical stability; y; = depth for q, at the
downstream boundary; and At = time interval.

For At = 0.25 - 2 hrs covering the practical range employed for streams in
Taiwan, previous investigations (6,8,9) have shown that the parameter P, has little



influence on numerical stability., Therefore it is omitted. This leaves only three
parameters in the function on the right hand side of Eq. 7. The stability criteria
in this case are shown in Figs. 1(a) and 1(b). From these figueres, one can see
that the region of numerical stability increases with decreasing AB; and also with
decreasing ¥ . The parameter P has little effect on stability if ¥ < 0.9 but it
has significant effect if F > 0.9 as can be seen in Fig. 1(b) where F + Py replaces
F on the abscissa.

10F
E (a) 200 (p)
[ 100
o |
Stable 50 :_ Stable

é ABr
10
Px 10™ Py 5
1
-2 f
0¥ F Unstable
Q5
Unstable
10'3 ] I : T - o1 ) ) L I
01 0.2 04 06 0809 09 1.0 11 12 13 14 15 18
F F+ Py
Fig. 1 Regions of stability for single stream (9)

For a given value of F or F + Py , one can choose a Ax such that Py and 4B,
values fall onto the stable region in Fig. 1(a) or 1(b). This choice ensures that
the numerical model is stable.

Tributary Confluence

When a main stream is joined by a tributary at a junction, the IFD scheme may
still be applied if junction condition is properly provided. It has been found,
however, that numerical instability arises if the difference in peak inflows
between the main stream and the tributary is too large (7,10). Investigations on
the effects of tribulary carried out by using numerical experiments (2,10) have
shown that the stability parameter can be expressed in functional relationship as
follows:

P, =.f2(]F,qpr,a) 8
where qp = qp1/qp2; qp1= peak inflow per unit width of the main stream; q,;= peak
inflow per unit width of the tributary; and o = time lag of the tributary peak

inflow. Other parameters are the same as those defined previously. It should be
noted that AB, and Py are set equal to zero in these studies on the effects of qy
and o . The results are shown in Fig. 2. From this figure, one can see that the

region of numerical stability increases as q  increases or as o decreases, but the
influence of qu;is obviously greater than that of a .

In practical application, q,. and « can be determined from the given upstream
boundary conditions, and F can also be evaluated from known stream slope, roughness
and inflow conditions. Upon knowing these parameters, one can choose an approp-
riate value of Ax such that Py value will map onto the stable region in Fig. 2.
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Fig. 2 Régions of stability for stream with tributary 10

Initial Condition

From the informtion given above, it is clear that the parameter F plays a very
important role in the criteria of numerical stability. However, this parameter F
defined for the peak inflow, herein called peak Froude number, is different from

the one for initial condition expresed as Fy; = Uy //gy, where uy and y, are,
respectively, the velocity and depth corresponding to the initial discharge Qg .
Numerical experiments carried out for §; = 0.008 - 0.032 and F =1 - 2 yielded

the following results (13):

e
E}A,Lt-(1+F)§0.2 (9

from which one can choose appropriate value of Ax or At to meet the stability
requirements.

APPLICATIONS

The criteria presented in the last section are applied to two rivers in Taiwan.
The first ome is Tahan Creek which is a tributary of Tanshui River System which is
composed of three major tributaries as shown in Fig. 3. The reach of Tahan Creek
between Shihmen Reservoir and its confluence with the Tanshui has a total length of
35.5 km. Its longitudinal bed profile, as shown in Fig. 4, indicates that it has a
rather steep slope of about 0.045 in the upper portion (11). The variation of
channel cross-section is shown in Fig. 5 from which one can obtain the maximum
value of 0.8 for AA/A which is assumed to be approximately equal to AB/B.

For Ax = 500 m, So= 0.045, q.= 5 cms/m and n = 0.045, one can obtain F = 0.49
and P, = 1.02. Entering the values of the pertinent parameters into Fig. 1(a), onme
finds that the point fall onto the unstable region. When the numerical model was
run with the conditions given above, it broke down and no results was obtained. At
this point, one could either reduce the spatial interval Ax or smoothen out some of
the wvariations between the cross-sections. The latter was done in this case to
bring down the maximum value of AB_ to be less than 0.6 and other parameters were
kept unchanged. After this adjustment, numerical stability was achieved as one can
find in Fig. 1(a), and the simulation model ran smoothly for the entire Tanshui
River System. The results of simulation is shown in Fig. 6, indicating good
agreement between the simulated and the recorded. In the simulation, the values of
9y » aand F, are all within the range of stability under given F and B . The



same model has also been sucessfully applied in other studies (14,15).

A similar test has also been carried out for Tsengwen River in southern Taiwan
(16). The values of variables used are : Ax = 600 m, AA/A = 0.5, 8, = 0.035, g, =
6 cms/m and n = 0.040. These values yield F = 0.55 and Py = 0.91. From Fig.
1(a), one then finds that numerical stability can be achieved, and again the
simulation model has been run without any trouble. However, when n-value was
changed to 0.03, then F = 0.7 and Py +F = 1.08 were obtained. This resulted in
numerical instability, both from Fig. 1 and from running the simulation model.
Once again the criteria for stability were verified.
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CONCLUSIONS

On the basis of the results of recent researches on flood routing for
streams as reviewed and summarized above,one can draw following conclusions:
1. Fully implicit finite difference models for flood routing is
unconditionally stable only if the stream slope is small enough. In addition,
cross—-sectional variability, tripbutary contluence, boundary conditions and initial

steep



conditions also have significant influences on numerical stability when the stream
slope 1is greater than 0.0005. The time interval of routing ( At) has 1little
influence when At is in the range of 0.5 - 2.0 hrs.

2. Numerical exeriments have shown that the stability parameter P, for single
channel is a function of the peak inflow Froude number F , ratio of cross-sectional
variation AB, and the parameter of downstream rating curve Py , as shown in Fig. 1.

3. For streams with tributary confluence, two more parameters, the ratio of
peak inflow gq,. and the time lag between inflows a , must be taken into
consideration 1in the determination of Py. The effects of qpr and o are shown in
Fig. 2.

4. When the initial flow condition is supercritical the initial Froude number
F, plays an important role in numerical stability. Its influence on stability is
given in Eq. 9.

5. Although the stability criteria for flood routing in steep streams
developed so far have been tested with a few cases of Taiwan's streams and have
shown quite good agreement, further tests under various field situations are still
recommended,
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APPENDIX - NOTATION

= cross—-sectional area;

qp//gy; = Froude number for peak inflow;
qo//gy; = Froude number for initial flow;
= any varible;

= gravitational acceleration;

He 08 rh o H O OH P>
n

= time index;

spatial index;

(S
]

Py = SDAX/yp = stability parameter;

Py = downstream boundary parameter;

Q = discharge;

Qo = base flow discharge;

Qp = peak inflow discharge;

q, = initial discharge per unit width;

q = peak inflow per unit width;

qz1 = peak inflow per unit width of the main stream;
qu = peak inflow per unit width of the tributary;
9.~ qp1/qp2 = ratio of peak inflows between main stream and tributary;
R = hydraulic radius;

Sy = stream bed slope;

Sf = friction slope;

T = duration of hydrograph;

t = time;

u, = velocity of initial flow;

X = distance along the mean direction of flow;

y = water depth;

v, = depth for initial flow;

Yp = uniform depth for qp3

Yb = depth for a5 at the downstream boundary;

AB = ratio of variation of stream width;

AQj = change in discharge;

At = time interval;

AX = spatial interval;

Azj = change in water level; and

a = time lag of the tributary peak inflow.



