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1. INTRODUCTION

In many different applications, examples of closely spaced tandem structures with
circular cross—section which are exposed to a mean velocity or current can be found.
In the area of hydraulics, pier supports (pilings), underwater cables, submerged
pipeline bundles and the risers on an offshore oil platform are a few examples.
Examples from wind engineering include closely spaced smokestacks, radio and televis—
ion towers, distillation columns, storage tanks for oil or water, electrical power
cables and closely spaced pipe racks. In the mechanical sciences, one immediately
thinks of heat exchangers as an example of this type of geometry.

It is important to recognize that all of these diverse geometries in their often
different environments are susceptible to flow—induced vibrations. 1In the following,
the symbols L and T will be used to denote the center—to—center spacing in the
streamwise and transverse directions, respectively, U signifies the freestream
velocity, £, is the frequency of cylinder vibration, T; is the period of vibration
(T, = 1/£f.) and D represents the cylinder diameter. Tandem cylinder vibrations can
be excited by a variety of mechanisms, depending mainly on the L/D ratio.

Cooper and Wardlaw [1971] reported that when L/D > 5, the downstream cylinder can
undergo what is termed "wake galloping" or "wake flutter". This type of vibration
occurs when the reduced velocity, U/f D, exceeds a threshold value, known as the
critical onset reduced velocity. The vibration of the downstream cylinder, charac-
terized by elliptical orbits, is driven by the mean velocity gradients in the wake of
the upstream cylinder. '

A different type of oscillation can result when the cylinder spacing exceeds
about six diameters (L/D > 6). If the downstream structure has an eigenfrequency
near the vortex shedding frequency of the upstream structure, the impinging von
Karman vortices from the upstream structure can cause a resonant vibration of the
downstream structure. This type of vibration is termed "resonant buffeting" and has
been examined by Wong [1980]. As with all vortex—induced vibrations one must expect
that resonant buffeting will occur only over a limited reduced velocity range.

King and Johns [1976] investigated what they called "in—line proxzimity interac—
tion" which can occur when the inter—cylinder spacing is less than six diameters (L/D
{ 6) and the mass damping parameter kg < 1.2. The mass damping parameter is defined
as kg = 2me5/pD2, where mg is the modal mass, & the logarithmic decrement and p the
fluid density. This type of tandem cylinder interaction is usually limited to
reduced velocities in the range 1.2 < Ug ¢ 5 and is characterized by cylinder motion
in the flow direction, :

"Cross—-stream proximity interference galloping"” or simply "interferemce gallop-
ing"” has been discussed by many authors, among them Zdravkovich [1974], Zdravkovich
and Pridden [1977], Ruscheweyh [1983] and most recently Shiraishi et al [1986]. This
type of cross—stream vibration generally occurs when the spacing ratio is less than
four (L/D ¢ 4). Amplitudes of vibration are typically of the order of ome diameter
and vibrations can occur over a wide range of reduced velocities, nominally 30 < Ug <
100 to 200. The remainder of the present paper will deal with this "interference
galloping"” phenomenon.

Bokaian and Geoola [1984a,b] attempted to calculate the response of the down-
stream cylinder by assuming the forces acting on it were the same as those acting on
a cylinder with a similar static displacement. The results of their quasi-steady
analysis only faintly resembled their experimental data, indicating that the quasi-
steady model is not appropriate. Ruscheweyh [1983] also employed a quasi-—steady
analysis, but he incorporated a phase shift between the cylinder motion and the
resultant quasi~steady forces. His analytical results were in acceptable agreement
with his empirical data.

The mechanism which drives interference galloping is thought to be the periodic
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switching of high speed flow into and out of the gap between the two cylinders. When
the two cylinders are aligned in the streamwise direction, there is only recirculat-
ing flow in the gap between the two cylinders and their common wake is symmetrical.
In the aligned position the transverse displacement of the downstream cylinder, n, is
defined to be zero. As the downstream cylinder moves away from the centerline, that
is, |n| > 0, it forces the wake to become unsymmetrical. At some critical transverse
location, the downstream cylinder presents a large enough flow obstruction to force
the shear layer emanating from the upstream cylinder to bend into the gap between the
two cylinders. The area of this gap is relatively small and the resultant gap flow
has a high velocity. The induced pressure field acts to restore the cylinder to its
in—-line arrangement, but the kinetic energy of the cylinder reaches a maximum just as
it passes through the position corresponding to m = 0, and the cylinder's momentum
carries the cylinder to a displaced position on the opposite side where the switching
of high speed fluid, called "jet—switching" by Naudascher [1983], occurs once again.
The physical significance of the

(a) y4 y tb) phase shift in Ruscheweyh's [1983]
model, or, equivalently, a time delay
T between cylinder displacement and the

equivalent quasi-steady loading, is
presented in Fig. 1, In Fig. 1la the
coordinate systems, (&,n) and (x,y), and
the equilibrium position of the cylinder
4 are defined. Note that for simplicity,
the equilibrium position of the cylinder
is at the critical transverse displace—

lo) ment (¢ = L, n = T) just prior to the

occurrence of "jet-switching". This

position is also given by Beq' where ﬁeq

Fig. 1: Proposed mechanism for sustain— = tan~1(T/L). It is also assumed, again

ing the oscillation of two closely for simplicity, that the downstream

spaced cylinders, after Knisely cylinder undergoes harmonic oscillations
[1985]. as shown in Fig. 1b. The force on the

downstream cylinder is dominated by the gap flow. When the high speed "jet" flow
occurs there is a negative lift force exerted on the downstream cylinder. When there
is only recirculating flow, the net lift force is approximately zero. The static
1lift force is idealized as a step function as shown by the dashed line in Fig. lc and
d. The switching of the "jet" into and out of the gap requires a2 finite amount of
time due to the fluid inertia. The transverse lift force acting on the downstream
cylinder is expected to be similar to the idealized curve shown as the solid lime in
Fig. 1lc. The finite time required for the jet to switch into and that required for
it to switch out of the gap are assumed to be approximately equal and are denoted by
Tige The significance of this delay time is evident in the force-displacement
diagram in Fig. 1d. If the "jet switching" were instantaneous, the process would
follow the line marked "static data"™ and the net area under the force—displacement
curve would be exactly zero. The finite delay time results, however, in a closed
loop which is traversed in a clockwise direction indicating energy transfer from the
mean flow to the cylinder motion, thereby sustaining the cylinder vibration.

The experiments discussed in this paper were undertaken to crudely estimate an
appropriate value for the delay time. After presentation of the delay time measure-
ments, a delay time model for cylinder interaction is formulated and initial results
are presented.

2. APPARATUS

Since the force on the downstream cylinder is dominated by the switching of the
"jet" into and out of the gap, and since the instrumentation required for force
measurement was unavailable, the experimental set—up shown in Fig. 2 was adopted.
The downstream cylinder was forced to oscillate by means of a scotch yoke mechanism
and the hot—film probe, mounted with the moving cylinder in a water flow, recorded
the switching of the "jet" into and out of the gap. The placement of the hot-film
probe was critical., After very careful observation using dye injection, the position
shown in Fig. 2, 43° from the forward stagnation point (in uniform flow), was chosen.
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L The errors associated with this choice

will be discussed in the section of this
Beg ™~ paper entitled "Results".

-\\\ Both cylinders were of diameter D =

5 cm. The value of L was held constant

at 1.5D and T was -0.28D, resulting in

an angle of Bgq = 10.6° (see Fig. 1)

between their line of centers and the

Q\\\ 5 direction of the flow. The Reynolds

\</ number for all experiments reported here

was 8.5 x 103, The frequency of forced

vibration of the downstream cylinder was

Fig.2: Experimental set-up for delay time continuously variable, permitting

measurement. reduced velocities, Up = U/(£.D), over

the range 5 ( Up < 50. The amplitude

of vibration could be varied continuously from 0 to 0.47D. The nominal water depth

for the experiments was 20 cm, yielding a cylinder aspect ratio of 4. The channel

was 50 cm wide, resulting in 10% blockage. No correction for blockage effects has

been made.

All velocity measurements were made using a DISA 55M10 anemometer in conjunction
with a DISA 55M25 linearizer and a conical hot film probe. The freestream streamwise
velocity fluctuations were about 1% and the flow was uniform to within about one
percent over the central 60% of the channel. Further details of the flow conditions
can be found in Knisely [1985].

Dynamic measurements were obtained using a Hewlett Packard 5451C Fourier Analyzer
to phase average the velocity signal. The cylinder displacement signal, obtained
from a variable inductance LDVT, was used as a phase reference. Normally 40 samples
were used to determine the ensemble average. The contribution of the probe's own
velocity to the output signal was checked and found to be negligible above a reduced
velocity of 7. Again, details can be found in Knisely [1985].

Hot film probe

3. RESULTS

A typical example of the ensemble averaged gap velocity and cylinder displacement
signals is given in Fig. 3. Positive cylinder displacement is toward the top of the
page, as shown in Figs. 1 and 2. From Fig. 3 one can clearly see the delay time

) between the cylinder motion and the gap
T T - T : r : . T ~ velocity. This delay time can be
estimated by measuring directly from the
time traces or by autocorrelating the
two ensemble averaged time signals since
only a single predominant frequency
component is involved.

The results of the measurement of
delay time required for the "jet" to
switch into the gap for five different
amplitudes of vibration and a range of
reduced velocities is given in Fig. 4.
Similar results were obtained for the
time required for the jet to switch out
F 4 of the gap. The data in Fig. 4 are well
. . . ) ) ) .| described by a linear correlation over

o 0 22 30 w0 HM:SK]W 7 e 0 W the range of reduced velocities con—

sidered in the experiments. The

Fig. 3: Ensemble averaged dynamic gap correlations with a linear least squares
velocity signal and cylinder dis-— curve fit are typically of the order of
placement. L/D = 1.5, T/D = 0.28, 90% or better. The worst fit and most

UgR = 16.5, A/D = 0.47. scatter occurs when the amplitude of

forced vibration is in the range 0.19D
to 0.30D, Flow visuvalization revealed that in this amplitude range, the "jet" was
formed by flow that first started around the outside of the downstream cylinder, but
was subsequently forced to reverse direction and flow through the gap. The "jet

ARBITRARY AMPLITUDE
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L L i
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flow" was attached to the downstream cylinder as it passed the forward stagnation
point (in uniform flow), but separated before it passed the hot film probe located at
43°, For this reason, the data for A/D = 0.19 and 0.30 are somewhat scattered. The
dependence of the delay time on the details of the flow introduces considerable
error.  The delay time data presented here are only estimates and may vary as much as
+20%.

The delay time is clearly a function of the ampli-
tude as well as the reduced velocity of the flow.
Preliminary results from additional experiments now in
progress covering Reynolds numbers in the range 2 x 104
0055 96.3 % to 8 x 104 suggest there is a strong dependence of the

ﬁ? :E: delay time on Reynolds number, as well. Rigorously, the
Se 2w | delay times presented in Fig. 4 are valid only for a
AL Reynolds number of 8.5 x 103,

To arrive at a single correlation curve, the least

squares curve fits to the data for the average delay

times, (Tswitchin§ in * Tswitching out)/2, were re-

plotted in many different forms, using the convenience of

; \ Lotus 123 software to quickly plot the various combina-

tions of parameters. The form that best correlated the

data, and also made the most sense physically, is shown

/Af in Fig. 5, where the nondimensional delay time is plotted

as a function of the reduced velocity divided by the

oo 1 square root of the nondimensional amplitude of vibration.

' \ \ The quantity UgR(A/D)-0.5 can also be written as

asr . % (U/¥D)(£24)70-5 and can be considered to represent the

FOUED moctY. e maximum nondimensional cylinder acceleration. Note that

Fig. 4: Delay time for the systematic variation of delay time with amplitude of

"jet switching" into vibration, found in Fig. 4, has disappeared in Fig. 5.

the gap as a function The curves for A/D = 0.055, 0.3 and 0.47 are almost

of reduced velocity identical. The deviation of the other curves is most

for A/D = 0.47, 0.40, likely due to the details of the gap flow, that is, local

0.30, 0.21, 0,11 and separations. The errors involved in measuring the

0.055. switching time in the manner employed here may be

considerable, but the data does suggest that correlating

the delay time with the parameter UR(A/D)'0°5 may be fruitful. The following
nondimensional correlation has been assumed, based on the data in Fig. 5:

tjs = Tjs U/G = kp (U/D) (£2a/p)70+3 (1)

where kp is a nondimensional coefficient and the variable G has been substituted for
D as the characteristic length. G is a measure of the approximate length of the free
shear layer emanating from the upstream cylinder and is given by:

6 = D{(L/D)2 + (T/D)2 - T/D + 0.25}°°3

Symbol  AfD Correlalion

ogo0Qgop
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(2)

6 The value for the constant kp will later
CorTTTTTT T T T T T T T T T be determined by a trial and error
procedure so that the calculated results
match the experimental laboratory results
4 at a single point, i.e. at Re = 1 x 105,
J The test of the model then is whether the
- rest of the calculated data correspond to
E the experimentally determined trends.
- Employing Eq. (2) and recalling that
1 4n2f%A is equal to the maximum cylinder
] acceleration (for harmonic motion) one
:f;i gy can arrive at the following correlation
0 0 00 200 300 200 00 500 for the dimensional delay time:
TRTY e

50 -

W -

/0 "I AV130 TVNOISNIWIONON
T

-

Tjs = kp (62/D)0-5 I¥,,,/(4x2) [70-5  (3)
Fig. 5: Delay time vs. nondimensional
acceleration parameter. As mentioned previously, experiments
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currently in progress at Kyoto University suggest that kp is a function of Reynolds
number., Since the Reynolds number dependence was unknown at the time of the present
analysis, however, the above correlation for Tp, Eq. (3), was employed in the delay
time model of tandem cylinder proximity galloping. More refined calculations will be
undertaken after this Reynolds number dependence is quantified.

4. EQUATION OF NOTION

The equation of motion for the downstream cylinder can be written as that of a
simple forced oscillator, provided the cylinder vibrates as a rigid body, that is,
the mode shape is given by y = 1. The forcing term on the right-hand side is the net
flow-induced force per unit length in the y—~direction. The equation of motion is

oy + ¢y + ky = L(t) - Cp(0.5p§52D) (4)

where it is assumed that L(t) can be given by the equivalent static force evaluated
at a delay time Tjg. Thus L(t) = F(&,n*) where F is the force corresponding to a
static displacement and n* = n(t - Tig).

Knowledge of the initial conditions and the static force distribution for static
displacements, that is F(&,n), coupled with the delay time model, Eq.(3) permits the
solution of the equation of motion, Eq. (4), at least in theory.

5. NUMERICAL SOLUTION

The delay time inherent in the evaluation of L(t) causes significant problems if
one attempts to solve Eq. (4). By assuming a starting cycle of undamped harmonic
motion, the flow—induced force at negative times can be estimated for the start of
the problem, The initial assumption is that the motion is nearly periodic, as was
observed in the laboratory studies of Zdravkovich [1974]. The procedure is to
neglect all damping and flow-induced forces and calculate one period of vibration of
the undamped system. After one period of vibration, the cylinder is again at its
original starting point with the same initial velocity and the same initial displace-
ment. Rigorously this solution procedure is mnot valid, but as an engineering
approximation for a process that is known to be almost periodic it may yield reason—
able results,

The static 1ift distributions presented by Zdravkovich and Pridden [1977] for Re
= 6 x 104 were employed for the solution of the equation of motion. Analytical
expressions were developed that closely resembled the static 1lift coefficient
distribution, although these expressions did not match the empirical data exactly.

The second order problem was rewritten as two coupled first order equations and
these were integrated using the Euler method. There is much room for refinement and
optimization of the numerical techniques. The results presented here are intended to
demonstrate that the delay time formulation does indeed lead to oscillatory behavior
that follows the trends of the laboratory results of Zdravkovich [1974].

The solution program was written in BASIC and calculations were carried out on a
KAYPRO PC, an IBM compatible personal computer. The results are plotted as phase
plane trajectories.

The calculated test cases were intended to emulate the experiments of Zdravkovich
[1974]. 1In his paper, the exact mass, spring forces and damping are not presented,
rather the natural frequency and the damping factor are presented. By making crude
estimates concerning the density of the material he employed it was possible to
examine a number of cases that should come close to his conditions, but no attempt
was made to match the experimental data by adjusting the mass in the calculationms.

Unless otherwise noted, the results presented below are for an assumed mass per
unit length of 2.0 kg, with a damping factor of 11.3 kg/s and a spring constant of
280 N/m. The delay time used in the calculations was determined from Eq. (3) as long
as Up was less than 80. For higher values of Ug, the delay time was assumed to
remain constant at the value corresponding to Up = 80. The value of kp used in the
calculations was 0.215.

There is considerable concern that the method of solution will lead to results
which are a function of the initial conditions. Fig. 6 shows the limit cycle in the
phase plane for two different initial conditionms, In Fig. 6a the limit cycle is
approached from below while in Fig. 6b the same limit cycle is approached from above.
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Fig. 6: Demonstration of independence of 1limit cycle from initial conditionms.

Calculations for m = 5 kg, ¢ = 28 kg/s and k = 700 N/m,

The results of calculations for variation with L/D and Reynolds number, neglect-
ing any variation in kp with Re, are shown in comparison with Zdravkovich’s [1974]
laboratory data in Fig. 7. VWhile the calculated results do not agree exactly in
magnitude with the experimental results, the general trends are quite similar. Based
on these preliminary findings, it would appear worthwhile to pursue this line of
research. With necessary adjustments for variation in delay time and static 1lift
coefficients with Reynolds number and numerical refinement, the proposed method may
lead to an acceptable prediction of the proximity galloping of tandem cylinders.

. 6. CONCLUSION

d T 1. From measurement of the kinematic jet switching
. 8‘65_] time, a delay time model for proximity galloping of
r (R i ”,‘,," tandem cylinders has been formulated. The prelimi-
LN o 1 nary solution of the equation of motion for the
- % ERY) downstream cylinder employing this delay time model
20 _tllg’;s/ . TI a s yielded results of the correct magnitude that agreed
FT 1 with the general trend of the laboratory results of
o [ 1% Zdravkovich [1974]. Further refinement of the model
i 2 Pt IR K and the numerical techniques are required before the
L 33'5 :Hg:;s 1 s amplitudes and frequencies of vibration can be

AP S I AP N R predicted exactly.

0
04 06 08 10 12 16 1.6 18 20x%0°
Reynolds Number, Re

Fig. 17: Comparison of 7. REFERENCES
calculated results with Bokaian, A. and Geoola, F. 1984a. J. Fluid MNech.
experimental data from 146, 383-415.
Zdravkovich [1974]. Upper Bokaian, A. and Geoola, F. 1984b. J. Fluid Mech.
curve is frequency ratio 146, 417-449,
and lower curve reduced Cooper, K.R. and Wardlaw, R.L. 1971. Proc., 3rd
double amplitude. Internat. Conf. on Wind Effects on Buildings

and Structures, Tokyo, 647-655.

King, R. and Johns, D.J. 1976. J. Sound Vib. 45, 259-283,

Knisely, C. 1985. "Flow Visualization and the Kinematics of Tandem Cylinder Inter-
action," Report SFB 210/E/15, Sonderforschungsbereich 210, University of Karls-
ruhe, Karlsruhe, W. Germany.

Naudascher, E. 1983. Engineering for Structures Subject to Flow—Induced Forces and
Vibrations (Notes from Intensive Course), 11-13 January, University of Karlsruhe,
Karlsruhe, W. Germany.

Ruscheweyh, H. 1983. J, Wind Eng. and Industrial Aero. 14, 129-140.

Shiraishi, N,, Matsumoto, M. and Shirato, H. 1986. J. VWind Eng. and Industrial Aero.
23, 437-447.

Wong, H.Y. 1980. J. Wind Eng. and Industrial Aero. 6, 49-57.

Zdravkovich, M.M. 1974, Proc. IUTAM/IAHR Symposium on Flow-Induced Vibrations,
Karlsruhe, Springer Verlag, Berlin, 631-639. ’

Zdravkovich, M.M. and Pridden, D.L. 1977. J. Wind Eng. and Industrial Aero. 2, 255-
270.

—564—



