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FINGERING IN 2-DIMENSIONAL HOMOGENEOUS UNSATURATED POROUS MEDIA
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1. INTRODUCTION: The unsaturated ground water zone acts as a link between
the rainfall infiltration and the saturated ground water zone. It is
suspected that infiltration takes place through preferential paths
which become the real 1link transporting the water to the deeper
stratum. Since in the present infiltration theory it is assumed that
water front moves stable wuntil it reaches the saturated zone, it
is essential to investigate the real pattern of motion through porous
med ium. In this study an attempt is made to <clarify the moving
pattern of the front when the infiltration takes place through the
unsaturated homogeneous medium. One of the first demonstrations of
unstable fingering phenomena in a Hele— Shaw <cell is due to Saffman &
Taylor? They established a stability
criteria and later Chuoke et al}
improved it including interfacial
tension. From the previous studies
it is also wunderstood that there
exists a clear difference between
the shape of the fingers developed
in Hele-Shaw <cell and the porous

medium. Considering the infiltration

of water through initially
unsaturated medium, Hill &
Parlange4 have experimentally
demonstrated the formation of

finger when the water front enters
from finer medium to coarser medium
and was mentioned that the front in
homogeneous medium is stable. But
this is only true when there exists
a continuous water supply at the
top surface of the medium as it
was the <case in their experimental
set up. In a practical sense, a
continuous supply can only be found

in artificial recharge by flooding. : developed

Otherwise the supply would be mostly

discontinuous and thus an air phase Fig. 1. Experimental observation.



is entrained through the top of the medium and fingers develop during
redistribution. In the experiments a homogeneous medium is used by
which the other possible factors which can contribute to
fingering is avoided. )

2. EXPERIMENT ON DRY MEDIUM: Two parallel glass panels were closely
spaced to make up a gap of 0.25cm and a rectangular region of
76cmx50cm is used for experiment. Brass net was used at the bottom
for the free escape of air. The gap was packed with dry homogeneous
glass beads of uniform size and the liquid of known volume was input
using a 76¢cm long rectangular vessel. The liquid immediately got ponded
up on top of the medium while infiltration was taking place and a
stable front moved down as in Fig.1(a) until the ponded liquid on the
top surface entered into the medium. As soon as the liquid entered
instability started to appear and gradually grew into fingers,
(Figs.1()&(c)) and later infiltration was only through these fingers.
Timed photography was used to trace the motion of the front.

3. STABILITY ANALYSIS: 1)Theory: For the infiltration through initially
unsaturated zone, the Richard’s equation is

vikve]= 2 '$Y)

Where K is the permeability, ® is the velocity potential, 8 is the
moisture content, t is time. For the present problem following
assumptions are made. a) There exists a distinct wetting front and
the soil is uniformly wet behind the front and having constant K and ©
and hence Eq.1 becomes V2¢=0. b)L>>E, where L is the depth of front from
the surface of the medium. & is the displacement of the front from mean.

Taking z=0 at the mean position, the boundary conditions are
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where Ap is the pressure drop at the front, o is the surface tension.
Using Eqs.2 & 3, Eq.1 can be solved by seperation of variables, where £
is considered as a small perturbation from the mean and expressed as a
Fourier combination

£ = Eoexp[nt+i(axx+ uyy)] (&)
where £, is amplitude, n is growth rate, t is time elapsed and « is
wave number(a2=ai+a§). Therefore solution for Eq.1 can be written as

(for ag<<1) ¢ = - % s explaztnt+i e xta )] 6)
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Using Eqs. 4 to 7 the following can be obtained
n = (p,gk,/u,~Wa-oa k,/u,. ®



For the front instability n>0 and hence a<ac, where
u P, gk, 12
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where u,,P, and k, are absolute viscesity, density and intrinsic

permeability respectively. W is the Darcy’s velocity of the front. From
Eq. 8 the wave number which gives maximum growth rate, (from %% =0) is

o« = ac/J3. ao

Therefore, from Eq.9 the condition for instability is
P, gk
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u
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2)A Qualitative Analysis on Experimental Results:

Observation 1: "The front was stable as long

gFonded water
v
.

as a ponded liquid remained on top (Fig.2Ca)>".

Under the assumptions mentioned earlier, the
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where h, is the height of ponded water and Cf Fig.2. Illustration on

P, gk, h,+ C
W= (1 +

is the head due to surface tension at the infiltrating front.
front. L(t) is the depth of front from the
surface of the medium. Since (h°+Cf) is positive, from Eq.12 W>p gk, /u, .

Observation 2: "Front become unstable as soon as the ponded liquid

vanishes. (Fig. 2{M))”. For this case, it can be written similar to Eq. 12

as
P, gk, c,-C
= g__e
W= —— (1 + 7)) ay

1
where Ceis the head due to surface tension createdzby the air entry from
top surface of the medium. According to Dussan V.: "The contact angle
of the liquid with solid grains is generally smaller in receding
side than advancing side"”. Therefore, generally Cf<Ceand hence from
Eq. 13 W<p,gk,/u1and thus the front become unstable and fingers develop.

3)Quantitative Analysis on the Experimental Observation:

In the experimental results, the wave length (Ao S) can be measured as

the distance between consecutive troughs. The w2ve length (Am ) which
gives the maximum growth rate can be obtained from Eq. 10 as‘Am= 2n /am.
Fig. 3 shows the appropriateness of the theory in comparison with the
experimental results. In a nondimensional form Eq.8 can be expressed as

N=a-as12 where a = [12k,0/(u, -0, gk, /u>)1 "“a ; and

I
1}

1,2 .
[12k,0/(u, (W-p, gk, /u,>)] "/(W-p gk, /u, )n. Fig.4 shows fairly good

agreement regarding the growth rate of fingers between the experimental

results and the above expressioen.
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4. MODELLING THE POROUS MEDIUM: Sinusoidal Porous Path Model.
To understand the wmechanism of finger growth, the medium can be
represented by a number of vertical axisymmetric tubes with

sinusoidally varying diameter in the axial direction as in Fig.5. As

this path incorporates the convergent—
divergent characteristic of the actual porous
medium, it is a reasonable choice than a

circular straight <capillary representation. Let

réz)=a—6cos(2nz/WA) be the radius of the porous

a-6cos{2Tz/W,)

path . The dimension of a sinusoidal unit is

r(z)

determined from the measurable properties such as
porosity,average grain size etc., us ing the

following eqgs.

Fig. 5. Sinusoidal
_ . (0.414-0.155) _
WyT 2rp 5 1m0 159570 476-0. 260  Pe0-260 . D unit.
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where Eq.14 is an inference from packing of spheres and Eq. 15 denotes
that the available pore space is constructed with a sinusoidal unit.
Even in this highly simplified axisymmetric flow situation the Navier-~

Stokes equation for the motion of a small column of liquid cannot be

solved exactly unless some assumptions are made, such as
a)inertial effects are negligible (small velocities), b)movement |is
steady within a small time step and c)pressure is assumed to be
invariant over a <cross section. The Navier—Stokes equation within a
time step is
3 82 1 3 32
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The boundary conditions are
v=w=20 at r = r, s
_ 9w _ =
v= 9r T 0 atr =20 [@§:))
and v(r,z)=v(r,z+wA); w(r,z)=w(r,z+WA) (¢210)]



where a is mean radius, 6 is the wave amplitude about mean, WAis wave

length, w,v are velocities in =z, r directions respectively, p is the

pressure, u is the wviscosity, Fz is the body force per unit volume.
A
Assuming that at each section the sectional average velocity (w) can
be expressed by,
A 2 2
w = 2w(l-r /r (2)) @D

Using Eq.18 to 21, Eq.17 can be reduced in terms of measurable
quantities as

uS, Vo/a W = PgVy~ 2Malr cosa = r cos(®, = w.)) 22
where W is - the average velocity of the moving liquid column, Vg is
the volume of liquid in a porous path, o is the surface tension, a, r.,r,
,Ba,aa and «, are shown in Fig. 5. Sgis the shape factor: Ratio of
resistance given by a path of varying cross section to the
cylindrical path, which can be estimated as follows: For a liquid
continuously flowing through this porous path, the equation of motion

for the creeping flow in terms of stream function is

2 2
2 .
E'v =0, where E. =&, +2 +12 23>
dz ar r ar
Boundary conditions
Wws/33z =0 atr = 0, 24
AW/z = W/Ir = 0 at r = r, (2), 25
ro(z)aw 2
jo rs; dr = Wa/ 2, 26)
and v(r,z) = W(r,z+wk), (24P
The following solution satisfy Eq.2? to 27,
2
v =Wa'lr/ry(z) = 0.5(r/ry(2>)" | 28>
pressure drop (Ap.) over a wave length W is
A A
L5 r, (2) L5\
= 3p 0 3p = 2 4
ApA Io 52 dz + IO 5t dr 8u Wa Io dz/(ry (2)) 29

where for <circular straight path with radius equal to the mean radius

*
of the above sinusoidal path, the pressure drop APA over a length WA is
W

*_guW.W./a . H S =Ap./ BApY = a' /W fA[1/ %14 30)
ApA— uw, A a . ence g pA pA = a o ry (z z.

5. MECHANISM OF LATERAL FLOW BETWEEN NEIGHBORING PORES. It is assumed
that the vertical sinusoidal paths are laterally connected through
nozzle—like wunits (Fig.6a) and the flow through it can be estimated?
a=apy Cry@w (1+25,) (1-5,) 31
where Ct is the radius of throat. Apd is the average pressure diference
across this nozzle—like unit. Considering the negative pressure due
to air-water menisci, the pressure gradient between two neighboring
porouslpaths can be assumed to be, (Fig. 6b)

bpy = E[xl—xz] [z/ha+l—(ha—z)/hb] 32>

with xl,xz,z,ha and hb as shown in Fig. 6b.



6. RESULTS AND DISCUSSION. Thus a simulation is carried out

sharing basing on Eq.32. Initially the front is assumed to]
perturbed with the wave number obtained from the

stability analysis. Fig.7 & 8 show one of

observed results respectively and hence
comparing these it c¢an be said that the
lateral flow due to pressure difference
between porous paths is one of the possible
mechanism which‘makes the fingers to grow.

7. CONCLUSION: It is experimentally evident

redistribution. Considering the

menisci is a possible

mechanism in accumulating the o s
towards the fingers
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Fig.8. A tracing of observed fingers.




