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1. INTRODUCTION
A characteristic feature of the mechanics of alluvial channels is

that the bed 1is self-formed by the interaction of flow and sediment
motion. In this paper a mathematical analysis of the longitudinal
variation of the depth-averaged flow in continuous river bends with
alluvial equilibium bed 1is developed. A new experssion for the bed
topography is applied apart from an exponential function utilized by
Engelund (1). The solution is obtained up to the second order in terms
of & by a perturbation method. The results are compared with existing
experimental data.

2. THEORY
2.1 Coordinate System and Governing Equations

The theoretical solution is derived for meandering channels the
centerline of which coincide with the sine-generated curve.

27tsc
6= 90 sin —— (1)
L

where 6= the angle between the tangent of the channel centerline and the
down-valley direction at a distance s. from the origin measured along
the channel centerline, 6 _,= the maximum angle between the centerline and
the wvalley axis, L= the meandering length of one meander along the
centerline and SC= the distance along the centerline of the channel (see
Fig. 1). : :

In this theory, it is utilized the three dimensional coordinate
system (sa,n »Z.)in which (sa,n Jcomposes an orthogonal curvilinear
coordinate s?stgm (3). The n -c8ordinate is the transverse distance
measured from the centerline aﬁd perpendicular to s on the same plane
of s . The origin of s_-coordinate is the location where 6 =0. z_ is
the Vertical coordinateCtaken positive upward. a

The main assumptions in the governing equations utilized in this
theory are explained in previous paper(3). In -this paper, it is assumed
that the longitudinal component of the bed shear stress is sufficiently
close to the total bed shear.
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Fig. 1 Coordinate system Fig. 2 (Cross section of the
channel and symbols
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where f is the friction coefficient.

For convenience let us begin with the nondimensional form of the
governing equtions (3).
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where Eq. 3 is the continuity equation, Eq.4 the sectional discharge and
Eqs. 5& 6 the momentum equations in s_. and n_ directions, respectavely.
Here c=fR/H_, €= BO/ZR, h= h./H_, %=u_sv2 v=u_/,V, s=s /R, n=n_/n_,
F_=V/gH , R=2nR/L. n _=B/2, B=L927 6 ,SH = the ﬂean avergge wateradegth
ober ofle single bend, ®u_ and u_= depth-aeraged velocity in s and n
directions, respectively™ and P= the slope of the transverse ‘averagg
level of the bed. The main symbols in this paper are illustrated in
Fig. 2.

The boundary conditions are nondimensionalized as follows (3):

v= 0 at n= * 1
u= ui(n) at s= So (upstream end) 7)
1
L-J h dn= 1 : at s= sd (downstream end)

2 41

2.2 Solutions by the Perturbation Method

In present analysis the perturbation method is used in terms of ¢
to solve the governing equations. The peturbed expression for the
hydraulic quantities are presented as follows:

2

h= ho+ eh1+ € h2+ ....... .
u= u+ eu,+ 52u2+ ..... ceen
V= Vot £V 4+ 82V2+ ...i..... (8)
Uj= Uy o+ Euy ez(nz— ; ) uj,+ .
=Rt €N+ 8272+ ceer et . |
=sn(aosin ks+ a; cos ks)+ 92(n2--——)(a2+ ag sin 2ks+ a, cos 2ks)

3
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where Ujgs Uy and u., in the fourth equation of Eq. 5 are constants
(3). The® fiflh equatldn of Eq. 5 is an equation which determines the
equilibrium bed profile and it is found to be a quadratic equation with
respect to the lateral coordinate ,n_, in continuous bends, where 7=
(H.- h)/H. and a_, a,, a,, a, and a, are constants. It is assumed that
th® flow ?s in qﬂasi-ﬁnifo?m. ?he derfvation of the solution follows the
line described in the preceding paper (3).
2.2.1 Zeroth Order Solutions

The zeroth order solutions from equilibrium bed are the same in
case of rectangular channel (ﬂo= 0). The solutions are shown as follows:

V,= 0
h0= 1
U= 1 (9)

V = (29iR/c) /2

where the fourth relation in Eq. 9 shows the condition of the normal
flow.

2.2.2 First Order Solutions
The nondimensional ‘expressions for the first order solition are
found out as follows:

2

h= h0+ 8h1= 1 + snF‘r cos ks
u= u + eu;= 1 + £n(A sin ks+ B cos Ks+ Cse'cs) (10)
V= vo+ v1 =0
where
kc 2 aoc2
A= (1+ F + a,l)+
22+ & T U7 2k2e e2)
1 c2 5 2 ck
Bs ——x [ (F - 1+ a,)- k°- a_l (11)
k2+ C2 5 r 1 2 ()
5

= - i - c
C3— (uil A sin ksO B cos kso) e

2.2.3 Second Order Solutions
The mnondimensional expression of the second order solution are
obtained as follows:

h2 (s,n)= h21+ h22
2
Fr 2 ! -Ccs
hy,= — (n© -—)[ A sin 2ks+ B,cos 2ks+ 1)+ 2C,e cos ksl
21 o 3 2 3
2
Fr -Cs -Cs
han= —— [ J,sin 2ks+J,cos 2ks+ J, e sin ks+ J, e cos ks
22 1 2 3 4
2 -Cs -Cs
+ Jse + J6+ J7e ]
el (12)
ck,+ 2kK cK,- 2kK K
S S’ . 1 "2 - .
u2 {(s,n)= > g sin 2ks+ 21 22 coSs 2ks+-—$- e % sin ks
C + 4K c” + 4k kK
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arezconstants wﬁichzwe gan ﬁot ghowstheTr détai%ed gxpréssi n d8e to

K
tZe restriction on space. h in Eq. 12 shows the deviation of the water
surface from the sectional 5$erage one.

Through Eqs. 9 to 12 we reach the full expressions up to the second
order solutions. The shear stress is determined by Eq. 2.

3. COMPARISON OF THE THEORY AND EXPERIMENTAL DATA
3.1 Transverse Distribution of the Depth-Averaged Velocity

The geometry of the flume in our laboratry has been shown in
previous paper (4). The coefficient expressing of the idealized bed
topography in the fifth equation of Eq. 8 are as follows: a_ = 0.673, a,=
3.110, a,= 7.357, a,= 3.708 and a,= 2.712. Fig. 3 shows tRe comparison
between the measured 3nd the calculéted values of the transverse depth-
averaged velocity. The theortical transverse velocity distribution shows
that the highest velocity which appears near the inner bank in the first
half of the bend tends to shift towards the outer bank as the flow goes
downstream. For our experimental data, unfortunately we don't have
measured values near the inner bank at the area between section n/4 and
section 5n/12 due to the shallowness of the water depth. It is seen from
Fig. 3 that the theoretical values show a g9ood agreement with the
measured values in magnitude as well as the transverse profile. The

emvsec
atill)

— Theory
* Measuyred data

Fig. 3 Distribution of depth~averaged longitudinal
velocity {(second order)
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BED ELEVATION CONTOURS

Fig. 4 Bed topography
(a) Measured by Hooke Run 35
(b) Simulated by Eq. (8)5

Fig. 5 Shear stress distribution
(a) Measured by Hooke Run 35
(b) Calculated (First order)
(C) Calculated (Second oreder)
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depth-averaged velocity distribution by the first order theory is linear
for the transverse direction variation and the magnitude estimated by
the first order theory seems satisfactory. The general behavior of the
theoritcal resultsis also supported by other experimental data (5). At
the point of appearance of the highest transverse velocity, the present
theory differs from Engelund's (1) theory which shows that the highest
velocity moves towards the outer bank withinfor the first half of the
unit bend.

3.2 Comparison With Hooke's Experiment

The centerline geometry of Hooke's flume coincides with a sine-
generated curve (2). Now, to compare the bed shear distribution measured
by Hooke and the theoretical values calculated by Eq. 2, it is needed to
deterimine an idealized bed topography in order to calculate the depth-
averaged flow. As an example for the comparison, Hooke's run 35 has been
considered. Fig. 4 shows the measured and the calculated bed topography.
It 1is found out the constants in the fifth equation of Eq. 8 equal to
a = 0.393, a,= 4.465, a,= 8.938, a,= -0.827 and a,= 2.013. The overall
a8reement is }airly good ?or the comparison of shea# stress.

The results of the first and the second order estimation of the
shear stress and the measured one are shown in Fig. 5. It is seen that
essential distribution pattern is reproduced by both the first and the
second order theory.

4. CONCLUSIONS

1. The theory shows 9good agreement with the wvariation of the
measured depth-averaged flow velocity and bottom shear stress along
meandering channels.

2. The contribution of the second order term in the theory does not
seem to be substantial. However, for the detailed discussion more
precise measurement is needed.
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