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The adaptive H,_, filter was established by adding a forgetting factor to the H_ filter in order to
identify structural systems with time-varying dynamic characteristics. The Akaike-Bayes
Information Criterion (ABIC) was used to determine the optimal forgetting factor. The behavior of
the adaptive H, filter in identifying time-varying structural systems was studied -in detail by
checking digital simulation results obtained using both the adaptive H, and Kalman filters. These
results show that the adaptive H,, filter efficiently tracks variation in the structural parameters and is
more robust than the adaptive Kalman filter for identifying structural systems with time-varying

dynamic characteristics.
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1. INTRODUCTION

Over the past several years, the H, control has
received much attention and has been used successfully
in aerospace and mechanical engineering as a robust
control approach. The H, filtering problem, based on
the H, criterion, also has been solved>? . The H,_
filtering problem is a state estimation problem of
minimizing the maximum energy in the estimation error
over all the disturbance trajectories. The state estimation
based on this criterion is valid when a significant
uncertainty exists in the disturbance statistics. The H_

- filter has been used to identify linear civil engineering
structural systems® . It has been shown to be very
efficient for identifying the parameters of linear
structural systems.

By adding the function of memory fading for past
observation data, we have developed an adaptive H,
filter to identify structural systems with non-stationary
dynamic characteristics. Identification algorithms are
proposed for time-varying structural systems for which
the velocity and displacement of each floor are available
for identification. The Akaike-Bayes Information
Criterion (ABIC) is used to determine the optimal
forgetting factor. The identification algorithms that use
the adaptive H, and Kalman filters are applied to a 5

degree of freedom (DOF) linear system with non-'

stationary dynamic characteristics ‘and to a 5 DOF
nonlinear structural system. Digital simulation results
show that the adaptive H, filter efficiently traces the
time-varying properties of structural systems. The
behavior of the adaptive H,, filter is better than that of
the adaptive Kalman filter for identifying a structural
system with time-varying dynamic characteristics.

2. BACKGROUND OF THE H_ FILTER
Consider a system described by

X = Apx, + Bow, 1)
¥e =C,x, + Dyv, ()
u, = Lx, 3)

where x, is the system state vector, y, the measurement,
and u, the vector to be estimated. The respective
exogenous signals w, and v, are the process and
measurement noises, A, the system transfer matrix,
B,, D, and L, the parameter matrices. Moreover, we
assume that R,:=D,DY >0 holds for any ¢.

The finite-horizon H, filtering problem? is to find
estimates of u, and x, based on the measurement set
{¥¢>**»¥,} such that

Sholps =[]
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where 4, is the estimate of u,, and "X, the a priori
estimate of the initial state, x,. Il is the positive
definite weighting matrix that represents the uncertainty
of the initial state. o is a positive constant that
represents the magnitude of the penalty. The central H,
filter which satisfies the above H, bound is given by®

% =%, +Kt(yt —Ct';t) ®)
Xiy = A X, Xy=X, (6)
’21 = Ltft Q)
K, -PCTR? ®

—_ -1
P =(p+CIR'C,) )

in which x, is the estimate of the system state vector x, ;
i, the estimate to be obtained; and K, the gain of the
adaptive H_, filter at time ¢. x,,, is the predicted value
of the system state vector at time ¢+1. The covariance

matrix P, satisfies the Riccati difference equation
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b= aafiolcine, L)

+B,Bf, P =T1 (10)
and
Vi=yd-LE(I+CTRICP) LT >0 (1)
in which 7 is the transpose of a vector or matrix. I is an
identical matrix.

If ¥ in Eq. (10) tends to the infinite, the covariance
matrix P, becomes

Pa=A4 {Pt_l + CtTRt_ICt }-lAtT + BtBtT (12)
Equation (12) is exactly the Riccati difference equation

of the Kalman filter. Therefore, the H_ filter is a
modified version of the Kalman filter.

3. THE ADAPTIVE H, FILTER

One defect of the K, filter is that the post-estimator
of the state variable at the present time is a conditional
estimator which puts equal weight on all past observation
data. The H_. filter therefore can not track non-
stationary variation of the state variable. The rate of
modification of the pre-estimator of the state variable
vector, X,, depends on the relative magnitude between
the covariance matrices of the state variable and
observation noise. The adaptability of the post-estimator
to the non-stationary change of the state variable vector
therefore is evaluated by placing the relative weight
between them. This is done by replacing R, and P, with
a,R, and b,F,, in which a, and b, are arbitrary
constants;

R, —a,R,, P.—bP, 13)
By defining a new scalar parameter A,
A = Z—: (14)
we can introduce the forgetting factor, A,, into Eq. (9) as
B =(3p*+CIRC) (15)
Substituting x, = A,_,%,_, into Eq. (5), we get
ir = (I - Kt Ct )At—l"zt-l +K,y, (16)

in which K, isthe H_ gain given by Eq. (8). The scalar
parameter A, is called the forgetting factor because this
value controls the fading away ratio of the effect of pre-
information on the post-estimator of the state variable
vector.

Expanding Eq. (16) back to the initial condition, the
equation obtained is

% =(I-KC)A_ % +K,y,
=(I-K,C)A,,-(I - K,C)A%, +
(7-K,C)A (1 - K,C,) Ak, y, +

""" +(I - Ktct)At—th-lyt—l +K,y, (A7)
The term [ - K,C, in this equation is written using Egs.
(8) and (17) as

I-KC = E[E—l - Pi-l (I_)iCiTRi_i)Ci]

‘ (18)
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=F(B*-CIR’C,)=2PP

Substituting Eq. (18), which is effective at each time step,
into Eq. (17), gives
% =8, oBF A BR ARy +8,,BE A,

+8,, BEA_K, ,y, , +Ky, (19)
The scalar coefficient & in front of each term in this

equation is a weight multiplied to each observation
vector that is given by

!
5,=1II A, &

jeist 17

Therefore, if a positive but A, <10 value is assigned,

the effect of past observation data on the estimate of state
variable vector can be reduced.

i = )\16‘_1;'- N 6!;! = 1.0 (20)

i

4. IDENTIFICATION ALGORITHM

4.1 Simulation of the structural system and

observation data

Identification  algorithms were developed to
demonstrate the efficiency of the proposed adaptive H_
filter for identifying structural systems with time-varying
characteristics. For a nonlinear structural system of n
DOF, the equation of motion is

mzZ, +c,z, + f =-mg, 21)
in which m and ¢, respectively are the mass and
damping matrices, z the relative displacement vector to
the ground, g, the ground motion acceleration, and fthe
nonlinear restoring force vector expressed by the
Versatile model . In this case, the component of vector
fis expressed by

fi =k;u; _aildi "filni_lli -Biy; Ifilnj (22)

in which u; is the relative displacement between the i-1
th and i th mass point, £, the stiffness, and «,, B, and
n; nonlinear parameters.

The seismic responses of the structural systems were
simulated as observation data for identification. The El
Centro NS (1940) earthquake record with a scaled peak
value of 25.0 gal was the input excitation. The sampling
interval of the structural responmses to be used for
identification is 0.01 second. As observation noise, we
added pink noise with a frequency band from 0 to 25 Hz.
The level of observation noise is defined by

v = Zome 41009 3)
g

resp.
in which o,,, and o, respectively are the standard
deviations of adding pink noise and the structural

responses.

4.2 Algorithm for structural system identification

For a linear structural system with non-stationary
dynamic characteristics, the parameters to be identified
are non-stationary damping and stiffness. The mass
matrix is assumed to be given. Instead of identifying
damping and stiffness directly, we identified the naturai
frequency and damping constant of each floor of an n
DOF structural system defined by
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h(O) =0 (’) w,(t) = ,/ =1eem (2)

The state vector to be identified is defined by
T
xt ={-.. Zi Z.i hi wi ...} , i=1’--.,n (25)

in which z; and z; are the relative displacement and the
velocity of mass point i with respect to the ground. The
state transfer equation, derived from Egs. (21) and (22),
is expressed as the first order of the nonlinear differential
equation of x,;
x, = g(x,) + B,w, (26)
To apply the adaptive H,, filter to the system transfer
equation defined by Eq. (26), the equation must be
linearized and discretized using a proper linearization
and discretization scheme such as® .
x, =A% +d,, +Bo, @n
The system transfer matrix in this equation is given by

A ~I+F,_di, F_ =25 (28)
&j -
Xp-1=%4-1

in which dt is the integration time interval, and d,_, a
constant term developed by linearlization as

d,, = (eF"ldt ) {g (%) = F 1%, 1} (29

The pre-estimator of the state variable vector is
X =A_%_ +d (30)
When structural responses to the velocity and
displacement of all the floors are available for identifying
an n DOF structural system, the measurement equation is
Y. =Cx, + Dy, @31)
in which y, is the 2n observation vector defined by

ve={ z 3 ...}T, i=leen (32)
and C, the 2nX4n measurement matrix given by

Cul [0 - 0

c, = C:2;t - 0 C 0 (33)
Cut| {0 0 - C
in which '

c 'L 0 00 14

lo100 ©9

5. ABIC: CRITERION FOR DEFINING THE

FORGETTING FACTOR

The forgetting factor is determined by using the
Akajke-Bayes Information Criterion (ABIC)”. The
ABIC value is an index used to judge the adaptability of
models to the estimated probability distribution function
of the observed data. This value is calculated using

ABIC = -2(MLL) + 2s 3%)

in which s is the number of hyper parameters. The MLL
value is obtained by taking the logarithm of the
probability distribution function of the observed data,
which is the maximum likelihood function of the

forgetting factor.
The mean value and variance of the system state
vector is assumed to be

E(x,)=%, (36)
E(x. - %)(x, - %) ]~ @37

The probability distribution function of the state vector at
time ¢ then is given as follows if the stochastic
characteristic of the state variable is defined by multi-
degree normal distribution;

1

p(x,) '_ﬁl)n—maw {_E(xr _-E:)TPt_l( —x,)} (38)

If we have the linear measurement equation as defined
by Eq. (31), for the measurement set {y,, :--, y,}, the
mean value of y, is given by

Ely 1=y, =Cx, (39
The covariance matrix is given by

E[(v. - 5.)(. - 5)]
- E[{C. v -%) + D Yl ~5) + D]

=C,PC +R, (40)
Assume that y, is an independent random variable
whose stochastic characteristic is expressed by a multi-
dimensional normal distribution with the mean value
given by Eq. (39) and the variance given by Eq. (40).
The probability distribution of the observed data then is

1

€xp
Jen |c.hC +R)

{_%(Y: - y:)T(C:RCtT +Rt)_1(yt - ;I)} (41)

After introducing A, intothe H,_ filter, R, and P,
in Eqgs. (38) and (40) respectively should be replaced by
a,R, and b, P,. The covariance matrix for measurement

y, is
o330

—E[ +Dv}{C( —x,)+Dv}T]

=a,(% c,P,cf +R,) )
and the distribution function
1

p(yr)=

Py)=

Jemrpic,
{'le,‘(y' —i,)’(z;‘c,P,c,T +R.)'1(y: —%)} 43)

Then the ABIC value at time 7 is expressed as a function
of the forgetting factor A,
ABIC(A,) = m{ln(ZJt) +In(a, )+ 1} - lnl/l,P,'ll
+10[R,| +1n[P| + 25 44)

The value of the hyper parameter, «,, is obtained by
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minimizing the logarithm for Eq. (44) with respect to a
as

a, =i(yt _it)T(;"t-ICtPtCtT +Rt_l)-l(y' _y‘) (45)

6. STRUCTURAL SYSTEM IDENTIFICATION

The identification algorithms developed were applied
to a 5 DOF linear structural system with non-stationary
damping constants or frequencies and to a 5 DOF
nonlinear structural system. Identification results
obtained with the adaptive H, filter were compared to
those obtained with the adaptive Kalman filter in order to
show the performance of the adaptive H_ filter in the
identification of structural systems with non-stationary
dynamic characteristics.

6.1 Identification of a 5 DOF non-stationary linear
structural system with velocity and displacement
responses available

my hy wg ag By

m, B h‘ w, a, /L

m@3 h, wy a, by

b, @, a, 8,

@ hoab

&

Fig. 1 5 DOF system model

Table 1. Parameters of the 5 DOF model

damping constant h,_| frequency w, (Hz)
case 1 2% (at 0 second) 13.97 (constant)
1% (at 10 seconds) o
case 2 2% (constant) 13.97 (at O second)
6.985 (at 10 seconds)
case 3 2% (at O second) 13.97 (at O second)
1% (at 10 seconds) | 6.985 (at 10 seconds)

Assume that all the floor responses for velocity and
displacement in the 5 DOF linear system are available
for identification. Fig. 1 shows the 5 DOF model used to
generate the observation time history (& and G in Eq.
[22] are set as zero). The mass of each floor of the model
is m;=0.12553 kg (i=1, ---, 5). El Centro NS with
scaled peak acceleration 25 gal is used as input motion of
simulation. Pink noise with the standard deviation set at
5% of the standard deviation of the structural response is
used as the measurement noise. We treated the non-
stationary dynamics- characteristics of 5 DOF lineat
structural systems of the three cases listed in Table 1.
Note that the damping constant and frequency are
assumed to change linearly when non-stationary
characteristics are considered.

The initial values of the system state vector, X, are
assumed to be given by {--- 00 00 003 30 ...}.
Pink noise with a standard deviation set at 5% of the
standard deviation of the structural response is used as
the measurement noise. The initial value of covariance,

F,, is defined as

Po=| @ ] G=1-9) (46)
in which x,; is the i th component of the initial value of
X,, and g a positive scalar constant (g=1.0 in the
simulation). In the digital simulation, the forgetting
factor is set as a constant value between 0.9 and 1.0. To
check the efficiency of identification, the mean- square
errors of the identified parameters also are calculated by
the equation

2

G H({g* _g*
181 (ea e,d) @

ms=—
P
9

Gia\H S
in which 8, is the exact value of the parameter; 6,, the
identified parameter; H the number of time steps used for
identification; and G the number of identified
parameters.
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Fig. 2 Identified para. of the 5 DOF linear system with
non-stationary characteristics (case 1)
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Fig. 3 Identified para. of the 5 DOF linear system with
non-stationary characteristics (case 3)

Fig. 2 shows the identification results for the 1% floor
obtained by the algorithms that use the adaptive H_ and
Kalman filters for case 1 (R=1.0 and A =0.95). The
identified parameters effectively trace non-stationary
damping. The parameters obtained using the H_ filter
converge faster than those obtained using the Kalman
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filter because the H, gain is more sensitive than the
Kalman gain. Fig. 3 shows identification results for the
1* floor obtained by the algorithms using the adaptive
H,, and Kalman filters for case 3 (R=1.0 and A =0.95).
The identified parameters also track the non-stationary
characteristics well, but there is large fluctuation for the
damping parameter. Again, the algorithm using the
adaptive H, filter works better than the adaptive
Kalman filter. ' '

200
~— Kalman Filter
g 150+ | - H-Infinite Filter
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j=%
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> 100+
[=]
£
s r
g 50 e
............ 7
0

0.0001 0.001 001 01 1 10

R value

Fig. 4 rms of the identified para. of the 5 DOF linear
system with non-stationary characteristics(case 1)
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Fig. 5 ABIC value of the identified para. of the 5 DOF
linear system with non-stationary characteristics
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Fig. 6 rms of the identified para. of the 5 DOF linear
system with non-stationary characteristics

Fig. 4 shows the rms values of the damping constants

identified using the adaptive H_ and Kalman filters for
case 1 (R=1.0 and A =0.95). The parameters identificd
using the adaptive H_ filter have smaller rms values as
compared to the identified results obtained using the
adaptive Kalman filter. The adaptive H_ filter is less
sensitive to the initial values of the state vector and the
covariance matrix than is the adaptive Kalman filter.
The adaptive H_, filter is more efficient and robust than
the adaptive Kalman filter for identifying a structural
system with non-stationary characteristics.

In the digital simulation, constant forgetting factors
between 0.9 and 1.0 are used throughout the observation
period to reduce the effect of past observation data on the
identified results. Fig. 5 shows the relation between the
ABIC value and constant forgetting factor for the three
cases. For cases 2 and 3, the optimal forgetting factor is
found at A =0.90, whereas the optimal forgetting factor
for case 1 is about 0.96. Fig. 6 shows the rms values of
the identified non-stationary parameters for the three
cases (rms values of the damping constants for case 1,
rms values of the frequencies for cases 2 and 3) when the
forgetting factor changes from 0.9 to 1.0. Use of the
optimal forgetting factor gives the minimal rms values of
the identified parameters with mnon-stationary
characteristics.

6.2 Identification of a 5 DOF nonlinear structural
system with available velocity and displacement
responses for each floor
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Fig. 7 Real and re-simulated time histories of the 1* floor
restoring forces of the 5 DOF nonlinear system

The model of the 5 DOF nonlinear structural system
shown in Fig. 1 was used to generate the observation

" time history. The mass of each floor of the 5 DOF system

is m;=0.12553 kg (i=1, ---, 5). The linear time
varying damping constant, A, , changes from 2% at the
beginning to 1% at 10 seconds, and frequency is set as a
constant, w; =13.98 Hz. The parameters from Eq. (22)
used to determine the restoring force are «; =20,
B;=1.0, and n,=2.0. Assume that the all the floor
responses of velocity and displacement of the nonlinear
system are available for identification. The initial value
of the system state vector, X, is assumed to be given by
50% of the real value. Pink noise with the standard
deviation set at 5% of the standard deviation of the
structural response is used as the measurement noise.
Assume that the mass of each floor of the system is
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known for identification. The parameters of the
nonlinear system are identified for three different values
of n; in Eq. (22) and of A, listed in Table 2. The re-
simulated responses of acceleration, velocity,
displacement and the restoring force obtained using the
identified parameters are compared to the real responses
of the nonlinear system in order to check the efficiency of
identification.

Table2. Parameters for identification

n(i=1 -, 5) A
case 1 2.0 0.95
case 2 2.0 1.0
case 3 1.0 0.95

Fig. 7 show the real and re-simulated (cases 1, 2, and
3) responses of 1" floor the restoring force. In case 1, the
parameter n; is set at the exact value. The identification
algorithm using the adaptive H_ works well to track
nonlinear variation of the structural parameters. The re-
simulated responses using the identified parameters
match the real responses very well. In case 2, the filter
has lost its adaptive capacity because the forgetting factor
is set at 1.0. Because the identified parameters can not
track the nonlinear property, the re-simulated structural
response does not match the real responses well, in
particular the re-simulated restoring force.

Osnplag Canstans
43 e

Troquency

S0 1208

a0 ..
time {1}

Fig. 8 Identified para. of the 5 DOF nonlinear system

In practical application, parameter #; is an unknown.
Therefore, the value of n; is set at 1.0 in case 3 to check
the efficiency of the identification algorithm when
parameter n; can be not set correctly. As shown in Fig. 7,
the re-simulated responses in case 3 also match the real
responses well. Fig. 8 shows the time history of the 1%
floor identified parameters h, w,;, a,, and B, for cases
1 and 3. In case 1, because parameter n; is set correctly,
all the identified parameters tend to converge to the exact
values. In case 3, in comparison, there is marked
fluctuation of the identified parameters. Value n; of case
3 is not set properly, as a result all the identified
parameters are adjusted during the process of
identification in order to track the nonlinear property of
the system. This is the reason for the marked fluctuation.

From the above discussion, the proposed algorithm

for identification of structural system using the adaptive
H, filter clearly is very efficient for identifying
nonlinear structural systems.

7. CONCLUSIONS
The adaptive H_ filter was developed to identify
structural  systems with time-varying dynamic

characteristics by introducing a forgetting factor to the

H_ filter. Structural identification algorithms were

proposed using the adaptive H_ filter to identify the

parameters of structural systems with time-varying
characteristics. The identification results of digital
simulations show that the performance of the adaptive

H_ filter for structural system identification is better

than that of the adaptive Kalman filter. The conclusions

of this study are

(1) The identified parameters of the structural system
obtained using the adaptive H,_ filter -converge
rapidly and effectively trace variation in the
structural parameters.

(2) When value R is set large, convergence becomes
slow, but large vibration is expected when R is set
small.

(3) The optimal forgetting factor can be determined by
using the minimal ABIC value.

(4) The adaptive H,, filter is more efficient and robust
than the adaptive Kalman filter for identifying
structural systems with non-stationary dynamic
characteristics.
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