(30) 断面欠損した鋼柱部材の CFRP 板と 低弾性接着剤による圧縮耐力の検討

今井 貴也¹·中村 一史²·平野 秀一³·增井 隆⁴·上條 崇⁵· 政門 哲夫⁶· 鈴木 啓之⁷· 中川 健太⁸

1学生会員 首都大学東京大学院博士前期課程 都市環境科学研究科都市基盤環境学域 (〒192-0397 東京都八王子市南大沢1-1)

E-mail: imai-takaya@ed.tmu.ac.jp

2正会員 首都大学東京大学院准教授 都市環境科学研究科都市基盤環境学域 (〒192-0397 東京都八王子市南大沢1-1)

E-mail: hnaka@tmu.ac.jp

³正会員 首都高速道路株式会社 保全·交通部 点検·補修推進室 保全技術課 課長代理 (〒100-8930京都千代田区霞が関1-4-1) E-mail: s.hirano711@shutoko.jp

4正会員 首都高速道路株式会社 保全・交通部 点検・補修推進室 技術推進課 課長 (〒100-8930京都千代田区霞が関1-4-1) E-mail: t.masui123@shutoko.jp

5正会員 一般財団法人首都高速道路技術センター 技術研究所 第一研究開発室 室長代理 (〒105-0001 東京都港区虎ノ門3-10-11) E-mail: t.kamijyo@tecmex.or.jp

6正会員 日本エンジニアリング株式会社 構造技術部 部長(〒231-0023横浜市中区山下町209番地) E-mail: masakado-tetsuo@nek-eng.co.jp

7正会員 株式会社ダイクレ 技術本部 課長 (〒136-0071 東京都江東区亀戸2-18-10) E-mail: h-suzuki@daikure.co.jp

8正会員 株式会社ITWパフォーマンスポリマーズ&フルイズジャパン Transportation Japan セールスリ ーダー(〒564-0053大阪府吹田市江の木町30-32) E-mail: knakagawa@itwppfjapan.com

本研究は、L形に作製したCFRP板と高粘度・低弾性の特徴を持つ接着剤を用いて、短工期で施工する工 法の開発を目的としたものである.既往の研究を踏まえ,断面欠損した桁端部の補剛材あるいはウェブの 圧縮耐力の回復を目的として、接着剤の厚さが性能回復に及ぼす影響を確認するために、静的載荷実験に より検討した.厚さ12mmの鋼板に対して75,100%の断面欠損(長さ100mm)を与え,鋼と等価な軸剛性 を有するCFRPを接着することで、試験体を作製し、圧縮実験を行った.検討結果より、接着剤厚さが 5mm以下であれば、圧縮耐力は、欠損率75%の試験体では、健全体の90%程度まで、また、欠損率100%の 試験体では、健全体の約80%程度まで回復することが確かめられた.

Key Words : steel column menmber, steel members with section loss, CFRP strips, low elastic adhesive, repair,

1. はじめに

老朽化した鋼鈑桁橋の劣化原因のほとんどが腐食にと もなう断面欠損であり、主に桁端部で多く発生している. よる当て板工法²が適用される.現場での孔明けによる これは、橋梁の耐力の低下に直接的に繋がるため、腐食

した桁端部の残存耐荷力を実験的、解析的に検討した研 究がこれまでにも数多く行われている¹⁾. 断面欠損に対 する補修・補強工法として、一般に、高力ボルト接合に さらなる断面欠損を考慮すると,有効断面が減少するた

め、補修設計が困難になる場合がある.このように、効 率的な維持管理が求められている中で、簡便で短工期と なる工法があれば有用である.

筆者らは、軽量で、現場でのハンドリングに優れる炭 素繊維強化プラスチック (Carbon Fiber Reinforced Plastic; CFRP) 板接着^{3), 4}による補修工法の開発を目的とした研 究を行っている. 過年度に実施した桁端腐食を模擬した 試験体の静的載荷試験⁵では、CFRP板には、ウェブ、垂 直補剛材の交差する鋼桁端部における急速施工を想定し て、一方向の炭素繊維シートを予めインフュージョンで 成形された立体形状を用いた. 接着剤には、エポキシ系 樹脂接着剤よりも、低弾性であるメチルメタクリレート 系構造用接着剤 (PLEXUS MA530, ITWパフォーマンス ポリマーズ&フルイズジャパン社製)を用いた.この接 着剤は、粘度が高く、厚付け接着が可能であるため、不 陸修正が不要であること、可使・硬化時間が短いため、 施工・養生の時間を短縮できること、硬化後の弾性係数 が小さく、破断伸びが大きいため、はく離しにくいこと の特徴を有する. その結果, CFRP板が減肉部の局部的 な座屈を防止し、断面欠損のない健全体と同等の圧縮耐 力まで回復することを確認した.

これまでの研究⁹では,接着剤の厚さを規定していな いが,一面せん断接着継手の試験片の引張試験により検 討した⁹ところ,接着剤の厚さが厚くなるほど継手強度 が低下することが明らかとなった.したがって,本研究 では,接着剤厚さが断面欠損した鋼柱部材の圧縮耐力の 性能回復に及ぼす影響を確認するために,H形試験体に よる静的載荷実験により検討した.鋼桁端部の断面欠損 を想定して,厚さ 12mm の鋼板に対して 75 あるいは 100%の断面欠損(長さ 100mm)を与え,鋼と等価な軸 剛性を有し,工場で予め製作したL形の CFRP 板を低弾 性・高粘度の接着剤を用いて接着することで,試験体を 作製し,圧縮実験を行った.

2. 検討対象と断面欠損のモデル化

過年度⁹には、一般的な鋼鈑桁橋の桁端部を想定して、 I 形断面の小型試験体を対象とした.本研究は、接着剤 厚さが断面欠損した鋼柱部材の圧縮耐力の性能回復を確 認することを目的としているため、垂直補剛材を有して いない I 形断面の小型試験体を対象とした.図-1 に、柱 部材のモデル化を、図-2 に、75%腐食と 100%腐食(欠 損)を模擬した、断面欠損した試験体のモデル化をそれ ぞれ示す.表-1 に、試験体の寸法をそれぞれ示す.支 点上の鉛直荷重に対する桁端柱部材としての耐力に着目 するため、載荷板を介して上下方向に荷重を載荷するも のとしてモデル化した.

断面欠損は、ウェブの下端 100mm の範囲とし、フラ ンジの腐食は考慮しなかった. 図-2 に示したように、 ウェブの厚さの欠損率を、下端で 75% (欠損の場合は 100%),上端で 0% (健全)としてモデル化した. 試験 体については、予め鋼板を機械加工により、断面欠損と した.

表-2 に、鋼材(SM400)の材料特性を示す.降伏強度, 引張強度,伸びはミルシートによる値である.弾性係数 *E*_s,ポアソン比 v_sは、鋼材の一般的な値として、200GPa, 0.3 をそれぞれ仮定した.

表-1 試験体の寸法

柱長L (mm)	240
フランジ幅 by(mm)	270
フランジ厚ţ (mm)	12
腹板高さ h _w (mm)	400
腹板厚さ <i>tw</i> (mm)	12

表-2 鋼材(SM400)の材料特性

項目	ウェブ
降伏強度 σ _y (N/mm ²)	276
引張強度 otu (N/mm ²)	433
伸びる (%)	30

載荷実験は、8 体について実施した. 表-3 に、実験パ ラメータを示す. 断面欠損のないモデルを健全(NR000) とし、欠損率 75%の断面欠損で、補修を行わないモデル を無補修(NR075)とした. また、断面欠損した試験体 の内、75、100%欠損に対して、それぞれ 75、100%欠損 (RR075, RR100)とした. 断面欠損したモデル(75、 100%)に対して、断面欠損していない一般部における 接着層厚(1,2,5mm)、CFRP板の炭素繊維シートの 積層数(13,17層)をパラメータとして組み合わせ、 計6体の補修した試験体について載荷試験を行った.

試験体の最大初期たわみ(面外たわみ)の実測値は, ウェブにおいて最大で 0.8mm であった.ウェブ高さ 400mm に対して 1/500 程度であり,道路橋示方書の製作 精度(1/250)を満足していた.

3. CFRP板と低弾性接着剤による補修方法

(1) 積層CFRPの補修設計

表-3 実験パラメータ			
試験体名	欠損率 (%)	接着層厚 <i>t_a</i> (mm)	CFRP板の積層 数 n
NR000	0	-	_
NR075	75	-	_
RR075T01_13		1	
RR075T02_13	75	2	13
RR075T05_13	15	5	
RR075T02_17		2	17
RR100T02_17	100	2	17
RR100T05_17	100	5	1/

表-4 CFシート(中弾性タイプ)の材料特性	
------------------------	--

弹性係数 Eg (N/mm ²)	440,000
引張強度 og (N/mm ²)	24,000
シート厚さ t _f (mm)	0.163
繊維重量(g/m²)	400

表-5 CF シート必要量	しの計算結果	
項目	75%腐食	100%欠損
鋼材の健全部の厚さ t_0 (mm)	12.0	12.0
鋼材の腐食部の残存厚さt (mm)	3.0	0
鋼部材の必要厚さ ta (mm)	9.0	0
断面欠損率r(t/to)	0.75	1.00
鋼材の弾性係数 E_s (kN/mm ²)	200	200
CFシートの弾性係数 Eg (kN/mm ²)	440	440
繊維体積含有率 Vf	0.50	0.50
CF シートの設計厚さ <i>t</i> f (mm)	0.163	0.163
CF シートの積層数 n	13	17
CF シートの鋼換算厚さ t _d s (mm)	9.32	12.2

表-6 CFRP 板の材料特性

項目	75%腐食	100%欠損
CFRPの設計厚さ t _{dp} (mm)	4.24	5.54
CFRP の弾性係数 E _{dp} (kN/mm ²)	176	176
圧縮弾性率の低減係数 c	0.8	0.8

補修の方針として、欠損率75%、100%に対して、減肉 した鋼板の剛性分を、鋼の弾性係数で換算した等価な CFRPの剛性で補うこととし、CFRP板の必要厚さは、

「炭素繊維シートによる鋼構造物の補修・補強工法設計・施工マニュアル」⁷の次式によるものとした.

$$A_{sl} \le A_{cf,s} \tag{1}$$

$$A_{cf,s} = t_{cf,s} \cdot B_{cf} \tag{2}$$

$$t_{cf,s} = \frac{E_{cf}}{E_s} \cdot t_{cf} \cdot n \tag{3}$$

$$E_{cfrp} = E_{cf} \cdot V_f \cdot c \tag{4}$$

ここで,

A_{sl}	:鋼部材の補修	• 補強必要断面積	(mm^2)
----------	---------	-----------	----------

 A_{ds} : CF シートの鋼換算断面積 (mm²)

t_{cts} : CF シートの鋼換算厚さ (mm)

 $B_{\mathcal{G}}$: CF シートの幅 (mm)

- E_s : 鋼材の弾性係数 (N/mm²)
- E_{d} : CF シートの弾性係数 (N/mm²)
- t_d : CF シートー層あたりの設計厚さ (mm)
- *n* : CF シートの積層数(枚)
- V_f :繊維体積含有率(%)
- c : 低減率

繊維体積含有率/Fは,既往の研究⁷から50%とした. CFシートは一方向材であり,繊維の配向は鉛直方向と

図-2 L形のCFRP板

表-7 接着剤の材料物性値

引張弾性係数(N/mm²)	759
引張強度(N/mm ²)	18.1
引張せん断接着強さ(N/mm ²)	9.9
可使時間(min)	30

した.表-4に、CFシートの材料特性を示す.本研究では、 弾性係数と引張強度にバランスの取れた中弾性タイプを 選定した.これらの値は材料メーカーによるものである. 表-5に、CFシート必要量の計算結果を示す.まず、表-5 より、欠損率75、100%の部位に対するCFシートの鋼換 算厚さはそれぞれ9.32、12.2mmであった.表-6に、式(4) により計算したCFRP板の材料特性を示す.なお、CFRP 板の弾性係数は、圧縮時に低下することから、解析では 低減係数0.8を乗じて、176kN/mm²とした.

図-2に、作製したL形のCFRP板を示す. CFRP板は、 CFシートを積層して、インフュージョン成形により作 製した. CFシートの繊維方向は、図に示したように鉛 直方向とした. CFRP板の初期たわみは、高さに対して 概ねゼロであった. 設計時の寸法は、195×240×100mmで あった. 表-5に、接着剤の材料物性値を示す.

図-3に、RR075モデル、RR100モデルのモデル化をそれぞれ示す. 図は、接着層厚2mmのものとした.

(2) 試験体の補修方法

a) 下地処理

試験体の表面は、黒皮の状態であり、欠損範囲は切削 加工のため、鋼材の素地状態となっている.下地処理に は、ブラスト面形成動力工具、ベルトサンダを用いて錆 や黒皮などを除去した(図-4 (a)).その後、アセトン を用いて表面を清掃し、油分や汚れのない状態とした.

また,溶接部の余盛などの突起を削り取ると溶接部に 悪影響を及す恐れがあるため,表面を切削しないように 留意した. CFRP板の表面は,研磨紙を用いて目荒しを 行った(図-4(c)).

b) プライマ塗布

下地処理後,鋼材表面の錆防止とCFRP板との接着性 を向上させるために,プライマ (PLEXUS PC120, ITW パフォーマンスポリマーズ&フルイズジャパン社製)を 塗布した.プライマは, IPA (イソプロピルアルコール)

(b) 補修用型材

(a) ディスクサンダによるケレン

(d) エアーガンによるライン塗布

(g) クランプ固定(その1)

(e) CFRP板への塗布の状況

(h) クランプ固定(その2)図-4 CFRP板接着による補修方法

(c) CFRP板表面の目荒らし

(f) 接着箇所のスペーサーの状況

(i)加温養生

とリン酸エステルから成り立っており、IPAによる表面 脱脂とリン酸エステルによるカップリング効果から、長 期的な耐水性を確保するために適用した.プライマの塗 布は、鋼材表面に錆の発生や汚れがないように、下地処 理後、速やかに行った.

c) 補修用型材への設置

本研究で用いる欠損した鋼柱材は、75%欠損の無補修 試験体ではたわみが大きく発生すること、100%欠損の 試験体では自立しないことからため、接着を行うことが 難しい.そこで、接着を行う際、補修用型材に設置し、 接着を行うこととした(図-4(b)).

c) CFRP板への接着剤塗布

接着剤は、CFRP板全面にエアーガンを用いてライン 塗布した(図-4 (d)).塗布は、ウェブ面、下フランジ 面に順に実施し、最後にそれぞれの面の境に塗布する (図-3 (e)).

d) CFRP板の接着,固定

接着剤を塗布したCFRP板の裏にスペーサーを用いて 接着層厚を管理し(図-4(f)),断面欠損した部材に接着 する.設計した接着層の厚さまでシャコ万力により強く 押し付け(図-4(g),(k)),はみ出した接着剤を拭き取 る.さらに、クランプで下フランジに固定する.フラン ジ部分の接着層厚は全ての試験体において5mmとした.

e) 養生

接着後は、加温養生を行った(図-4 (j)).養生条件は、約25℃、12時間とした.

(3) 接着層厚さと接着条件

表-8に,設計した接着層厚さと実測した接着剤厚さを 示す.接着層厚さは,健全部においての設計厚さであり, S側,N側において全体の厚さから,CFRP板と健全部で ある鋼板の厚さを引いた値の半分の値の平均値とした. 表-8より,設計した接着厚さに対して,完成した補修試 験体では,接着層厚さの最大誤差が14%と大きいが,そ の他の試験体では誤差が約5%と精度よく接着されてい ることを確認できた.

CFRP板の接着に用いた接着剤は、低弾性、高粘度の 性質があることから、前述したように、接着層内部にボ イドが発生する恐れがある.既往の研究^{5,0}により、空 隙が生じた場合でも、施工管理基準内(厚さ5mm以下、 不良率50%以下)であれば、接着不良が性能回復やはく 離に与える影響は無視できるといえたことから、本研究 では、空隙に関しては検討を行わないこととする.

4. 柱部材の性能回復の実験的検討

(1) 実験方法とセットアップ

図-5に、セットアップ状況を示す. 試験体の下面にソ ールプレート(250×250mm)を、上面に載荷板(250× 250mm)を設置した.図-5に示したように、鉛直変位は 上フランジ下面の4箇所に設置した変位計により計測した.鉛直変位は4箇所の平均値とした.

図-6に、試験体のひずみゲージの位置を示す. なお、 図を略したが、裏面にも同様にひずみゲージを設置した. さらに、CFRP板が接着された内部の鋼板の挙動を検討 するため、RR075T05_13、RR075T02_17、RR100T02_17、 RR100T05_17の試験体では、ひずみゲージを接着箇所の 鋼板の表面に設置した. 設置した内部のひずみゲージを 赤色で示す.

(2) 検討結果と考察

a) 荷重-変位関係と性能回復

図-7に、荷重と載荷点直下の鉛直変位の関係を、表-9

表-8 試験体の接着層厚さ

⇒₩₩☆/╁	設計厚さt	計測値	設計厚さに対
武观学生	(mm)	t_a (mm)	する誤差 (%)
RR075T01_13	1	1.07	7.0
RR075T02_13	2	1.72	14.0
RR075T05 13	5	5.13	2.6
RR075T02_17	2	197	1.5
RR100T02_17	2	2.08	4.0
RR100T05 17	5	4.88	2.4

図-5 セットアップ状況

に各モデルの最大荷重と健全に対する性能回復の効果を それぞれ示す.

まず,NR075モデルの耐荷力は,NR000モデルと比べ, 88.6%低下した.これは、ウェブの断面欠損部の最小厚 さが、3mmと薄いため、早い段階で降伏し、局所的に座 屈したためである.

一方, CFRP板を接着接合したRR075モデルでは, NR000モデルと比べて,柱部材としての最大荷重は,90 ~100%まで回復することがわかる.その中でも RR075T02_17モデルでは,NR000モデルと比較してほぼ 100%であり,NR000モデルの耐力まで十分に回復してい ることがわかる.また,接着層厚が1,2,5mmの範囲で は,接着層厚の違いが耐力の回復に大きな影響を及ぼさ ないといえた.他方,RR100モデルでは,NR000モデル と比べ,柱部材としての最大荷重は,80%程度まで回復 することがわかる.

さらに、CFRP板で補修したRRモデルでは、NR000モ デルより、最大荷重時の鉛直変位が大きいことが確認で きた.

b) 垂直補剛材のひずみと変形

図-8に、荷重と垂直補剛材の軸ひずみの関係を示す. 軸ひずみは、垂直補剛材の下端から15mmの高さのひず みゲージの値を示している. RR100モデルのでは、対象 箇所のひずみゲージがないため、図には記載されていな い.図より、NR075モデルでは、荷重が最大荷重付近 (約92kN)までは、NR000モデルと同程度の軸ひずみが

発生し、その後、軸ひずみが大きくなること、また、 NR000モデルでは、最大荷重(807.1kN)時には、降伏ひずみに達しないが、座屈後にひずみが増大することがわかる.

一方、CFRP板で補修したRR075モデルでは、荷重が小 さい段階から、NR000と比べて、ひずみが大きくなる傾 向が見られることから、CFRP板は、鋼板の塑性化の進 展を抑えることはできないが、局部座屈は抑制できるこ とがわかる.さらに、RR075モデルでは、最大荷重に達

表-9 各モデルの最大荷重と健全に対する性能回復の効果

試験体の種類	最大荷重(kN)	健全に対する比率
NR000	807.1	1.000
NR075	92.2	0.114
RR075T01_13	737.2	0.913
RR075T02_13	760.3	0.942
RR075T05_13	769.6	0.954
RR075T02_17	807.8	1.001
RR100T02_17	651.6	0.807
RR100T05_17	628.8	0.779

(a) NR000

(b) NR075(c) RR075T2_13図-9載荷後における試験体の変形状態

(d) RR100T2_17

するまでに、鋼材の降伏ひずみ(約1380×10⁶)を超え ているが、鋼材の降伏後も荷重が増大することから、 CFRP板が荷重を伝達していることがわかる.

c) 破壊形式

図-9に、載荷後における試験体の変形状態を、図-10 に、載荷後における下端200mmの破壊形式を、図-11に、 載荷後におけるCFRP板の破壊形式をそれぞれ示す.

まず,NR075モデルでは、断面欠損のあるウェブの下端に局部座屈が生じることがわかる.NR000モデル, RR075T2_13モデルでは、ウェブの高さ中心付近が面外方向に変形する座屈が生じることがわかる.一方, RR100T2_17モデルでは、ウェブの面外方向への変形が見られなかったことから、座屈が生じる前に、CFRP板のはく離、圧壊が混在して発生したことが考えられる. また、図-11に示したように、補修したすべてのモデルにおいて、断面欠損の中心部(CFRP板ウェブ面の下端50mmの位置)でCFRP板が圧壊することがわかる.

図-12に、荷重とCFRP板下端50mmに生じる圧縮応力 の関係を示す. CFRP板の圧縮応力は. 計測したひずみ に、CFRP板の弾性係数を乗じて算定している. 図より、 いずれのケースもCFRP板の材料試験に基づく圧縮強度 (660N/mm²)を超えていないが、曲げ応力の影響もあ り. 材料強度以下で、圧縮破壊したと考えられる.

表-10に、各モデルの破壊形式を示す. RR075モデル では、CFRP板の圧壊、CFRP板のはく離、断面変化部の 局部座屈、全体座屈が混在して生じており、RR100モデ ルでは、CFRP板の圧壊、CFRP板のはく離が混在して生

(a) NR000

図-10 載荷後における下端 200mm の破壊形式

図-11 載荷後における CFRP 板の圧壊

図-12 荷重と CFRP 板下端 50mm の応力の関係

表-10 各モデルの破壊形式

試験体の種類	破壊形式
NR000	全体座屈
NR075	断面変化部の局部座屈
RR075T01_13	
RR075T02_13	CFRP 板の圧壊・はく離、断面変化部の
RR075T05_13	局部座屈, 全体座屈の混在
RR075T02_17	
RR100T02_17	CEDD 振の圧壊・けく離
RR100T05_17	

じている.また、補修した全てのケースで、CFRP板の 圧壊、CFRP板のはく離が生じていることがわかる.な お、RR075モデルでは、NR000モデルより、最大の面外 変形が生じる位置が、若干上側になった.以上から、 CFRP板の接着接合により、断面欠損部の局部座屈を抑 制する効果があることが確かめられた.

RR100モデルでは、全てのケースで、CFRP板のはく離、CFRP板の圧壊が確認されており、面外に変形する前に、最大荷重に達していることがわかる.

d) CFRP板端部の接着剤のせん断応力とはく離挙動

RR075モデル, RR100モデルでは, 上述したように, CFRP板にはく離が生じていた. そこで, CFRP板のはく 離の発生を, 鋼板のコバ面における下端210mm, 200mm, 190mmのひずみゲージにより, 次式%によって, せん断 応力を求め, 比較する.

$$\tau_e\left(\frac{L_{k+1}+L_k}{2}\right) = \frac{t_s}{2} \cdot \frac{\sigma_s(L_{k+1}) - \sigma_s(L_k)}{L_{k+1}-L_k} \tag{5}$$

ここで,

な:鋼部材に発生するせん断応力(N/mm²)

ts: 観察箇所の鋼板の厚さ(mm)

図-13に、実験結果の代表例として、RR075T02_17, RR100T02_17モデルの試験体の荷重とせん断応力の図を 示す.図より、RR075モデルでは、最大荷重までせん断 応力は小さいこと、最大荷重後にせん断応力が大きくな ることから、CFRP板のはく離は、最大荷重まで発生し ないといえた.次に、RR100モデルでは、RR075モデル と同様に、最大荷重までせん断応力は小さいが、最大荷 重後のせん断応力は、RR075モデルのように大きくなら なかった.したがって、最大荷重時までは、CFRP板の 端部では、はく離が発生していないことがわかる.

e) CFRP板, 鋼板のひずみ挙動

図-14に、荷重とCFRP板表面、CFRP板内部の鋼板の軸 方向ひずみの関係を示す.一般部では、NR000モデル、 CFRP板のひずみは、下端から190mm、110mmの値の平 均値とし、腐食部では、NR000モデル、CFRP板のひず みは下端から50mmの値とした.CFRP板内部の鋼板の軸 方向ひずみは、図-6に示したように、一般部である下端 130mmの位置のひずみをa、b、腐食部である下端50mm の位置のひずみをc、dとし、E面とW面の結果をそれぞ れ示した.図には、代表的な値として、RR075T02_17、 RR100T02 17モデルの結果を示している.

図-14 (a), (c)より,一般部において,CFRP板内部の鋼材のひずみは,NR000と比べて若干小さく,約600kN付近まで線形挙動であることがわかる.しかしながら,最大荷重に至る過程で,CFRP板内部の鋼材のひずみは,RR075T02_17では,徐々に大きくなり,最大荷重付近で降伏ひずみを超えること,RR100T02_17では,600kN付近で急に大きくなり,降伏ひずみを超えることがわかる.

図-14 (b)より、CFRP板内部の鋼材のひずみは、約500kN付近まで抑制され、降伏しないことが確認できる. 荷重が500kN以上で、CFRP板内部の鋼板のひずみは、降 伏ひずみを超えるが、荷重はさらに大きくなること、ま た、全ケースにおいて、CFRP板表面のひずみは、最大 荷重まで安定していることから、はく離が生じることな く、CFRP板が荷重を分担しているといえた.

5. まとめ

本研究では、鋼桁橋の桁端腐食部を対象に、立体 CFRP板を低弾性高粘度の接着剤を用いて接着する補修 工法において、接着剤の厚さによる影響を確認するため に、接着剤の厚さをパラメータに柱部材の耐荷力の回復 について、実験的、解析的検討を行った.その結果、以 下のことがいえた.

- (1) 欠損率75%の断面欠損に対して,CFRP板を接着接 合した場合,健全体と比べて約90%の圧縮耐力が 得られたことから,性能回復の効果が十分にある ことが確かめられた.一方,欠損率100%の断面欠 損に対して,CFRP板を接着接合した場合,健全体 と比べて,約80%の圧縮耐力まで回復することが わかった.
- (2) CFRP板が接着された断面欠損部は,健全体の50% の圧縮耐力で降伏するが,降伏後も座屈すること なく,荷重が増加し,圧縮耐力が回復することが わかった.これは,断面欠損した鋼部材がCFRP板 によって座屈変形が抑制される効果によるものと 考えられた.
- (3) 欠損率75%の断面欠損において、接着層の厚さが 圧縮耐力に及ぼす影響は、厚さ5mm以下であれば、 健全体と圧縮耐力がほぼ一致することから、接着 層厚さ5mm以下では、圧縮耐力の回復への影響は ほとんどない判断された。

以上のことから、腐食した鋼柱部材に対して、接着剤の厚さは2mm以上、5mm以下であれば、圧縮耐力は回復することから、鋼桁腐食部のように、狭隘な環境下では、

立体的な形状に予め成形されたCFRP板を接着接合する ことで、短工期で効果的な補修が可能であるといえた.

今後、本検討モデルの解析的検討を行うとともに、補 修工法の設計法の確立に向けて、検討を継続する予定で ある.

参考文献

- 国土交通省国土技術政策総合研究所:道路橋の局部 腐食に関する調査研究,国土技術政策総合研究所資料,第294号,2006.1
- 丹波寛夫,橋本国太郎,田中大介,杉浦邦征:腐食 した鋼桁端部の当て板補修に関する実験的検討,構 造工学論文集,Vol.60A, pp.94-104, 2014.3
- 複合構造委員会編: FRP 部材の接合および鋼と FRP の接着接合に関する先端技術,複合構造レポート 09, 土木学会,2013.
- 5) 今井貴也,中村一史,平野秀一,増井隆,上條崇, 政門哲夫,鈴木啓之,中川健太:断面欠損した鋼桁 端柱部材の CFRP 板と低弾性接着剤による性能回復 に関する検討,土木学会論文集 A1 (構造・地震工 学), Vol.75, No.5, pp.II_6-II_18, 2019.5
- 6) 今井貴也、タイウィサル、中村一史、増井隆、上條 崇、小林明史、平野秀一、政門哲夫、鈴木啓之、中 川健太:一面せん断接着継手試験による低弾性接着 剤の破壊形式と接着強度の評価、土木学会、土木学 会年次学術講演会講演概要集, I-132, 2019.9
- 7) (株)高速道路総合技術研究所:炭素繊維シートによる鋼構造物の補修・補強工法設計・施工マニュアル, 2013.10

(Received August 30, 2019)

EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH OF STEEL COLUMN MEMBERS WITH SECTIONAL LOSS USING LOW ELASTIC ADHESIVE AND CFRP PLATE

Takaya IMAI, Hitoshi NAKAMURA, Shuichi HIRANO, Takashi KAMIJO, Takashi MASUI, Tetsuo MASAKADO, Hiroyuki SUZUKI and Kenta NAKAGAWA

This paper deals with development methods for construction in a short period using L-shaped CFRP plates and adhesive with high viscosity and low elasticity. Based on previous study, in order to recover the compressive strength of the steel girder end with sectional loss (75, 100%), and confirm the effect of adhesive thickness on performance of recovery, compressive loading tests were conducted. As a result, if the adhesive thickness is under 5mm, the specimens with sectional loss ratio of 75% and 100 % have the load carrying capacity of approx. 90% and 80 % for the reference specimen, respectively.