(64) 内蔵鉄骨形状の異なるCES柱の構造性能に 関する実験的研究

藤本 利昭¹·大崎 広貴²

¹正会員 日本大学教授 生産工学部建築工学科 (〒275-8575 千葉県習志野市泉町1-2-1) E-mail: fujimoto.toshiaki@nihon-u.ac.jp

> ²正会員 株式会社安藤・間(〒107-8658 東京都港区赤坂6-1-20) E-mail: osaki.hirotaka@ad-hzm.co.jp

CES構造は、内蔵鉄骨と繊維補強コンクリート(FRC)で構成される合成構造で、これまで継続的に研究が行われている。本研究では、内蔵鉄骨に同一断面の鋼材を用い、H形鋼を強軸および弱軸曲げ方向に 内蔵した試験体、交差型H形鋼を内蔵した試験体、T形断面を内蔵し、曲げ方向が異なる試験体の正負漸 増繰返し載荷を行い、内蔵鉄骨の形状の違いによる曲げ耐力、復元力特性等の構造性能への影響を検討し た。その結果、内蔵鉄骨形状の違いに関わらず、大変形時においてもコンクリートの大きな剥落はないこ と、内蔵鉄骨形状がH形断面の強軸方向、交差型H形断面、T形断面の試験体の履歴曲線は最大耐力以降も 大きな耐力の低下がなく優れたエネルギー能力を有し、終局曲げ耐力は一般化累加耐力式によって精度よ く評価できることを明らかにした。

Key Words : Composite Structure, Concrete Encased Steel Structure, Structural Performance,

1. はじめに

CES 構造とは、Concrete Encased Steel 構造の略で、鉄骨 鉄筋コンクリート (Steel Reinforced Concrete;以下, SRC) 構造の鉄筋コンクリート (Reinforced Concrete;以 下,RC) 部を繊維補強コンクリート (Fiber Reinforced Concrete;以下,FRC) に置き換えた新しい建築合成構 造システムである。CES構造に関する研究は、これまで 継続的に行われているが、CES柱に関しては、内蔵鉄骨 に単一のH形鋼を強軸方向に用いた研究や、交差型H形 鋼を用いた研究^{D3}に限られている。更にそれぞれの実 験は、軸力比、使用材料、断面寸法等の実験条件が異な ることから直接比較することが困難である。

そこで本研究では、内蔵鉄骨に同一材料、同一断面の 鋼材を用い、単一のH形鋼を強軸および弱軸曲げ方向に 内蔵したCES柱,交差型H形鋼を内蔵したCES柱,実際のSRC構造で用いられるようなH形鋼とカットTで構成されるT形断面の鉄骨を内蔵したCES柱試験体の正負漸 増繰返し載荷を行い,内蔵鉄骨の形状の違いによる曲げ 耐力,復元力特性等の構造性能の影響を検討し,構造設 計の基礎資料を得ることを目的とした。

2. 実験概要

(1) 試験体

試験体一覧を表-1に、試験体断面を図-1に示す。全試 験体の柱断面は、 $b \times D = 200 \times 200$ mm(ここで、b:断面 幅、D:断面せい)とした。実験変数は内蔵鉄骨の形状 である。

試験体	内蔵鉄骨 (SS400)	繊維補強コンクリート	軸力
No.1	H形断面:H-150×75×5×7 (強軸方向)		N=0.20F,×b×D (216kN)
No.2	H形断面:H-150×75×5×7(弱軸方向)	L D 200 200	
No.3	交差型 H 形断面: 2H-150×75×5×7	$b \ge D = 200 \text{mm} \ge 200 \text{mm}$	
No.4	T形断面:H-150×75×5×7(弱軸方向)+T-122.5×75×5×7	$(F_c=2/N/mm^2)$	
No.5	T形断面:H-150×75×5×7(強軸方向)+T-122.5×75×5×7		

表-1 試験体一覧

試験体No.1, No.2は内蔵鉄骨を単一のH形鋼とし、載 荷方向に対し試験体No.1は強軸方向,試験体No.2は弱軸 方向に配置した。試験体No.3は内蔵鉄骨を交差型H形鋼 とし、試験体No.4、No.5は内臓鉄骨がH形鋼とカットTを 組み合わせたT形断面であり、試験体No.4はH形鋼が弱 軸方向、試験体No.5はH形鋼が強軸方向になるよう計画 した。試験区間の長さLは断面せいDの4倍(L=4D)のL =800mmであり、せん断スパン比(a/D, a: せん断スパ ン)は2.0である。

(2) 使用材料

表-2に鋼材、表-3にFRCの材料試験結果をそれぞれ示 す。内蔵鉄骨にはSS400材を用いた。FRCの設計基準強 度は、 $F_c=27$ N/mm²とした。FRCに使用した繊維は、直 径が0.66mm,長さが30mmのビニロンファイバー

(RF4000)で、普通コンクリートに体積混入率で1.0% を混入した。

(3) 実験方法

図-2に試験装置を示す。実験は、軸力載荷フレーム内 に試験体軸方向を水平にセットした状態で5000kN構造 物試験機に設置して載荷を行った。載荷は、軸力載荷フ レーム内の油圧ジャッキにより軸方向力N=216kN(= 0.20F_c・b・D)を加力した後、軸方向力を一定に保持した 状態で5000kN構造物試験機により正負逆対称曲げせん 断力を加えた。

せん断力の載荷ルールは、部材角 θ (= δ /L, δ : 鉛直

変位)による変位制御とし、θ=0.0025、0.005rad.を各1サ イクル, θ=0.01, 0.015, 0.02rad.を各2サイクル載荷した 後, $\theta = 0.03$ rad. を1 サイクル載荷した。

表-2 鋼材の材料試験結果

試験体	種類	板厚 <i>t</i> mm	降伏 強度 _{σy} N/mm ²	引張 強度 _{のt} N/mm ²	ヤング 係数 E _s N/mm ²
No.1, No.2,	ウェブ	4.78	377	521	177224
No.3	フランジ	7.00	332	492	185974
No.4 No.5	ウェブ	4.57	300	436	207803
INO.4, INO.3	フランジ	6.46	303	433	201779

表-3 FRCの材料試験結果					
	圧縮	ヤング	引張	材齢	
試験体	強度	係数	強度	13 BP	
H- #37(11)	$c\sigma_B$	E_{c}	$c\sigma_t$	н	
	N/mm ²	N/mm ²	N/mm ²	Γ	
No.1,No.2,No.3	37.2	30461	9.31	452	
No.4,No.5	36.8	29359	9.08	103	

3.実験結果および考察

(1) 破壊状況と履歴特性

表-4に実験結果一覧,図-3にせん断力-部材角関係 (Q-θ関係),図-4に最終破壊形状を示す。なお、図-3 中の□印は鉄骨フランジの降伏時を, ▽印は最大せん断 力時を示している。ここで、鉄骨フランジの降伏は、試

衣-4 美缺結朱一覧						
試験体	部材降伏時		最大耐力	時(正側)	最大耐力時(負側)	
	部材角 θ_v	降伏耐力	部材角 θ_u	最大耐力	部材角 θ_u	最大耐力
	$(\times 10^{-2} rad.)$	Q_y (kN)	$(\times 10^{-2} \text{rad.})$	Q_{uexp} (kN)	$(\times 10^{-2} \text{rad.})$	Q_{uexp} (kN)
No.1	0.85	116.8	2.02	154.6	-1.98	-149.9
No.2	1.19	49.6	2.68	56.9	-3.10	-56.3
No.3	0.78	106.8	2.04	169.0	-1.92	-170.9
No.4	0.58	92.5	2.77	143.5	-2.56	-144.5
No.5	0.86	122.1	2.60	157.2	-2.51	-158.0
No.6	0.67	87.5	2.89	120.9	-2.53	-122.5

験体材端部の圧縮縁および引張縁となる内蔵鉄骨フランジ(試験体No.1, 3, 5:フランジ面,試験体No.2:フランジ側面,試験体No.4:フランジ面および側面)に貼付したひずみゲージの値により判断した。また図中の点線は、日本建築学会「鉄骨鉄筋コンクリート構造計算規準・同解説」⁴(以下,SRC規準)の考え方に基づく一般化累加耐力式によって評価した終局曲げ耐力を示している。なお図中の点線では、載荷装置の特性による*P*-*δ*効果の影響を考慮した値となっている。また、図4に示した最終破壊形状は図-1における左側側面の破壊形状を示しているが、試験体No.5は内蔵鉄骨が左右非対称断面であるため左右の破壊形状が異なった形状を示したことから、両側面の最終破壊形状を示している。

全試験体の破壊進展状況は、試験体端部被りコンクリートの曲げひび割れ発生、試験体端部フランジの降伏の順に進展し、試験体No.2, No.3, No.4, No.5 では、コンクリートの被り厚さが薄いフランジ付近に沿ったせん断付着ひび割れが発生し、特に試験体No.2ではそのひび割れの拡幅が顕著であった。また試験体No.1では、せん断付着ひび割れは発生せず、部材端部での曲げひび割れの拡幅が顕著であった。しかしながら、内蔵鉄骨形状に関わらず、部材角 θ =0.03rad.においてもコンクリートの大きな剥落は認められなかった。これはFRCの繊維による補強効果と考えられる。

 $Q - \theta$ 関係に関しては、曲げひび割れ、鉄骨の降伏な らびにコンクリートの破壊の進展に伴って剛性が低下し た後、最大耐力に達した以降も急激な耐力低下はなく、 安定したエネルギー吸収の大きな紡錘形状の履歴曲線を 示した。しかし、内蔵鉄骨形状がH形断面の弱軸方向の 試験体No2の履歴曲線は、終局曲げ耐力に相当する耐力 を発揮せず、大きく下回る耐力となったが、部材角 θ = 0.03rad.まで耐力低下はみられなかった。

また、内蔵鉄骨が同断面で載荷方向の異なるH形断面 の試験体No.1, No.2, T形断面の試験体No.4, No.5につい てそれぞれを比較すると、試験体No.1とNo.2では、部材 角の漸増に伴い耐力の差が大きく生じた。一方試験体 No.4とNo.5では、No.4の耐力が若干下回る値で推移した が、載荷方向に関わらずどちらもエネルギー吸収の大き な履歴曲線を示した。

表-4より,弱軸方向のH形鋼を内蔵した試験体No.2の 最大耐力は,強軸方向のH形鋼を内蔵した試験体No.1の 最大耐力の1/3程度の値であったが,弱軸方向のH形鋼に カットTを追加した試験体No.4の最大耐力は,試験体 No.2に比べ大きく上昇し,試験体No.1と同程度の最大耐 力を示した。また,強軸方向のH形鋼を内蔵した試験体 No.1,強軸方向のH形鋼にカットTを追加した試験体No.5, 強軸方向のH形鋼に弱軸方向のH形鋼を追加した交差型

64 - 3

H形鋼の試験体No.3の順に内蔵鉄骨量が増加するほど最大耐力が高くなっている。

(2) 終局曲げ耐力の比較

図-5に軸方向力-終局曲げ耐力相関曲線(N-M相関 曲線)に実験より得られた最大耐力の正側を◇,負側を □としてプロットして示す。図中の実線で示したN-M 相関曲線は,前述のSRC規準⁴による一般化累加耐力式 による値であり,コンクリート部のN-M相関曲線(点 線),鉄骨部のN-M相関曲線(破線)も併せて示して いる。なお,試験体No.4は,鉄骨部が曲げ方向により曲 げ耐力が異なるため, N-M相関曲線はそれらの平均値

64 - 4

を示している。

また、表-5に実験より得られた最大曲げモーメント *M*_uとSRC規準による計算終局曲げ耐力*M*_uを示す。

最大曲げ耐力と計算終局曲げ耐力との比は内蔵鉄骨形 状がH形断面の強軸方向の試験体No.1,交差型H形断面 のNo.3,T形断面のNo.4,No.5は1.00~1.23倍であり,一般 化累加耐力式により精度よくCES部材の曲げ耐力を評価 できることが分かった。

一方,内蔵鉄骨がH形断面の弱軸方向の試験体No.2は 実験値が計算値の0.68倍となり,計算終局曲げ耐力より 小さい値を示した。そこで,試験体No.2の耐力について 若干考察する。

図-4(b)に示したように、試験体No.2では、フランジ付 近に沿ったせん断付着ひび割れによる損傷が顕著であり、 実験においてもコンクリート断面が内蔵鉄骨により2分 割されるような挙動を示していた。

そこでコンクリートが重ね梁の様に、内蔵鉄骨により 断面せい方向に2分割されたものと考え、コンクリート の終局耐力の評価を試みた。その結果が図-5(b)の赤線で 示したものであり、表-5には計算値を示している。本検 討結果からは、実験値と計算値との対応は良く、概ね評 価できているものと考えられる。

試験体	最大曲げ耐力 _e M _u (kN・m)		計算終局曲げ 耐力 _c M _u	$_{e}M_{u}/_{c}M_{u}$	
	正側	負側	(kN•m)	正側	負側
No.1	64.2	62.1	55.9	1.15	1.11
No.2	25.2	25.2	37.2 (21.7) ^{**}	0.68 (1.16) ^{**}	0.68 (1.16) ^{**}
No.3	69.7	70.0	69.6	1.00	1.01
No.4	59.9	60.1	55.4	1.08	1.08
No.5	65.2	65.5	56.2	1.16	1.17

表-5 終局曲げ耐力

※:()内の数値は, FRCを2分割として評価した値

(3) 等価粘性減衰定数

図-6に等価粘性減衰定数 h_{eq} と部材角 θ との関係を示す。 図-6には各試験体の Q_c - θ 関係において、同一部材角で加 力が2回行われた部材角 θ =0.01、0.015、0.02rad.の2サイク ル目の等価粘性減衰定数 h_{eq} を比較している。なお、等 価粘性減衰定数 h_{eq} は、以下の式により求めた⁵。

$$h_{eq} = \frac{1}{4\pi} \cdot \frac{\Delta W}{W_e} \tag{1}$$

ここで、 ΔW :履歴ループの1サイクルの面積、 W_e : 等価ポテンシャルエネルギーである。

内蔵鉄骨がH形鋼の強軸方向の試験体No.1とT形断面の試験体No.4、No.5を比較すると、 h_{eq} は部材角 θ =0.01rad. において6~9%、 θ =0.015 rad.で11~14%、 θ =0.02rad.で約

20%とほぼ同程度であり、部材角の増大に伴いh_{eq}も増大 する傾向が認められた。

交差型H形鋼を内蔵した試験体No.3は,試験体No.1, No.4, No.5に比べh_{eq}は小さい値を示した。履歴曲線から は、このような差異は明確に認められないが,試験体 No.3は他の試験体に比べ耐力が高いたため、このような 差が生じたものと考えられる。

一方,弱軸方向のH形鋼を内蔵した試験体No.2の h_{eq} は, 部材角 θ =0.01rad.においては試験体No.1,No.4およびNo.5 と同程度であったが,部材角が θ =0.015rad., θ =0.02rad. と増大しても変化は僅かで,7.0~8.9%の値に留まった。

(4) 復元力特性モデル

前述の実験結果より、CES柱の挙動は材端に曲げひび 割れが発生し、その後鉄骨が降伏し、最大耐力に達した 後に若干耐力が低下するという経過を辿ることがわかっ ている。このような特性を基に、CES柱の復元力特性は、 図-7に示すように第一折れ点を曲げひび割れ発生点 Q_c , 第二折れ点を終局曲げ耐力点 Q_u とするTri-linearにモデル 化されている^{3,6}。モデル化に際しては、曲げひび割れ 耐力 Q_c は日本建築学会「鉄筋コンクリート構造計算規 準・同解説」⁷(RC規準)に従って算出し、終局曲げ耐 力 Q_u はSRC規準⁴による一般化累加耐力が用いられてい る。初期剛性 K_c は曲げ変形とせん断変形を考慮した弾性

剛性が用いられる。なお、降伏後の第三剛性は弾性剛性 K_e の1/1000とし、第二剛性を決定する剛性低下率a,の値 は、交差型H形断面では 0.3^3 という値が示されているが、 単一のH形断面では $0.175 \sim 0.322$ 程度の値になることが報 告がされている⁹。

図-8に、実験結果の包絡線と復元力特性モデルを比較 して示す。図-8では、曲げひび割れ発生点Q_c(*R*, *Q*) までの実験結果と復元力特性モデルとの対応は良く、内 蔵鉄骨の形状に関わらず、初期剛性がほぼ一致している ことが確認できる。

内蔵鉄骨形状がH形断面の強軸方向の試験体No.1では, 図(a)に示す通りa,=0.4とすると実験結果と良い対応を示 した。交差型H形断面の試験体No.3では,図(c)に示す通 り,既往の研究で提案されているa,=0.3で評価すると実 験結果と良い対応を示した。T形断面の試験体No.4およ びNo.5では,剛性低下率a,=0.4とすると実験結果と良い 対応を示した(図(d), (e))。

一方,H形断面の弱軸方向の試験体No.2は,実験値が 計算終局曲げ耐力に到達しなかったことから,図(b)に 示すように剛性低下率に関わらず第二剛性と耐力を過大 評価する結果となった。そこで前述の検討結果を基に, コンクリート断面を2分割して終局耐力を評価した場合, 図中の赤線で示すようにa,=0.3とすることで実験結果と 良い対応を示した。

これらのことから,H形断面の弱軸方向試験体では検討の余地が残されているが,内蔵鉄骨形状が交差型H形断面の試験体はa,=0.3,H形断面およびT形断面の試験体はa,=0.4とした復元力特性モデルが実験結果と概ね良い対応を示すといえる。

4. 結論

本研究によって得られた知見を以下にまとめる。

- ・内蔵鉄骨形状の違いや軸力の有無に関わらず、部材角 $\theta = 0.03$ rad.においても繊維補強コンクリートの大きな 剥落は確認されなかった。
- ・内蔵鉄骨形状がH形断面の強軸方向,交差型H形断面, T形断面の試験体の履歴曲線は最大耐力以降も大きな 耐力の低下がなく優れたエネルギー能力を有している こと,終局曲げ耐力は,一般化累加耐力式によって精 度よく評価できることが明らかとなった。
- ・復元力特性モデルは、内蔵鉄骨形状が交差型H形断面の試験体は剛性低下率a,を0.3,H形断面およびT形断面の試験体は0.4としたTri-linearモデルで実験結果を概ね評価できることを示した。
- ・H形断面の弱軸方向の試験体では、最大耐力が終局曲

げ耐力に到達せず,エネルギー吸収の小さい履歴曲線 を示すことが明らかとなった。

・H形断面の弱軸方向の試験体の終局曲げ耐力および復 元力特性モデルについては、せん断付着ひび割れを考 慮し、コンクリート断面を分割する評価方法を提示し た。ただし試験体が1体のみであることから、今後更 なる検討が必要である。

謝辞:本研究の一部は,平成26-28年度文部科学省科学 研究費補助金(基盤研究(C),課題番号26420563,代表 者:藤本利昭)の助成を受けたものである。また本研究 は,日本建築学会 鋼コンクリート合成構造運営委員会 に設置されたCES構造性能評価指針検討小委員会の活動 の一環として実施したものである。ここに記して関係各 位に謝意を表します。 いた鉄骨コンクリート合成構造柱の構造性能に関する実験 的研究,コンクリート工学年次論文集,第24巻,第2号, 2002.6, pp.271-276

- 2) 松井智哉,溝淵博己,藤本利昭,倉本洋:シアスパン比が 異なる CES 柱の静的載荷実験,コンクリート工学年次論文 集, Vol.31,No.2, 2009.7, pp.1165-1170
- 3) 藤本利昭, 倉本洋, 松井智哉: 交差 H 型断面鉄骨を内蔵した CES 柱の構造性能, 第8回複合・合成構造の活用に関するシンポジウム講演集, 土木学会/日本建築学会, 2009.11, Paper No.4 (CD-ROM)
- 4) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解
 説, 2014
- 5) 柴田明徳:最新耐震構造解析(第3版),森北出版株式会 社, 2014, pp45-46
- 石鈞吉,倉本洋,藤本利昭,松井智哉,牧元祐太:H形鉄 骨内蔵 CES 柱の復元力特性のモデル化に関する研究,日本 建築学会構造系論文集,第78巻,第693号,2013.11, pp.2019-2026
- 7) 日本建築学会:鉄筋コンクリート構造計算規準・同解説, 2010

参考文献

1) 足立智弘, 倉本洋, 川崎清彦: 繊維補強コンクリートを用

EXPERIMENTAL STUDY ON STRUCTURAL PERFORMANCE OF CES MEMBERS WITH DIFFERENT BUILT-IN STEEL

Toshiaki FUJIMOTO and Hirotaka OSAKI

Concrete Encased Steel (CES) structural system consisting of fiber reinforced concrete (FRC) and encased steels is a new composite structural system, and is being conducted continuous and comprehensive studies to make it practical. In this study, the effects of the steel shape on the flexural behavior of CES members are experimentally studied. The selected test parameters are sectional shapes of built-in steel. This paper discusses how to evaluate the structural performance of CES members. It is revealed based on the test results that the AIJ design formulas for SRC structures can be applied for evaluating the ultimate flexural of CES members. Hysteresis models for CES columns are also applied and verified their validity for the practical use through comparing them with the test results.