(51) 押し・剥離を考慮したアーチ合成梁の実用 基本式について

原田 晶利

正会員 ケンテック株式会社 技術部 (〒101-0031 東京都千代田区東神田2丁目1番地-8号) E-mail: m-harada@kentec-web.co.jp

鉄筋コンクリート梁とH形鋼や鋼製デッキプレート、鉄筋トラス付鋼製デッキプレートとが結合された 様な合成梁で、各々の梁の支持状態を自由に表現するにはズレ剛性のみならず押し・剥離剛性を考慮しな ければならない。梁が曲率を持つ場合、曲率があることで剪断力と軸力が互いに独立で無いのと同様、結 合部分のズレ応力・押し剥離応力も互いに独立では無い。本論文は合成平面円弧アーチ梁で結合部分のズ レ剛性・押し剥離剛性を考慮し、結合される各々の梁の支持状態を自由に扱える基本式を作成したもので ある。基本式は合成作用による対軸力Tを不静定力とすると、直線合成梁の場合と同様、Tは張り角々に対 する6階の微分方程式となる。

Key Words : composite circular arch beam, basical equation, coupled axial force, split-off action, 6order differenttial equation

1. はじめに

一般に合成梁は完全合成として扱われる。しかし鉄筋 コンクリートスラブとH形鋼や鋼製デッキプレートとの 合成梁・合成スラブではH形鋼やデッキプレートはある スパンで支持されるのに対し、鉄筋コンクリートスラブ は連続しているので各々の支持条件が異なる場合が殆ど である。また結合手段として多用されている頭つきスタ ッドや合成スラブ用デッキプレートの突起、材軸方向の 小溝にしても実際はある程度のズレが生ずるので完全合 成では無い場合が殆どである。不完全直線合成梁の基本 式は結合されている各々の梁の撓みは同じであるとし、 結合部分のズレ剛性のみを考慮して導かれた合成作用に よる対軸力Tの2階微分方程式が多様されている。これ は簡便で便利な式である。また梁が曲率を持つ場合は曲 率を介して梁の軸力と剪断力が互いに独立ではないので、 Tを材軸方向(張り角)に積分した∫Tdφの4階の微分 方程式になる¹⁾。これらの基本式は結合されている各々 の梁の支持状態を自由に扱うためには難があるのも事実 である。従って結合される各々の梁の支持条件を扱える 基本式が欲しい。文献2では結合部分のズレ剛性と押 し・剥離剛性を考慮することで、結合している各々の梁 の支持状態を自由に扱える直線合成梁の基本式が作成さ れている。本論文は梁が曲率を持つ円弧アーチ梁で各々

の梁の支持状態を自由に扱える合成円弧アーチ梁の基本 式を作成したものである。基本式は文献2の直線合成梁 の場合と同様、合成作用による対軸力Tに関する6階の 微分方程式になる。

2. 構造モデル

図1に2つの円弧アーチ梁が結合された構造モデルを 示す。

図1構造モデル

2つの梁の図心間距離をしょとする。各々の梁はその図心 からe1. e2の位置で結合されている。各々の梁の軸,曲 げ剛性をKal, Kbl, Ka2, Kb2, 材軸, 法線方向の変位をU1, W1, U2, W2 とする。R1, R2, Rt は梁1, 梁2, 結合位置の曲 率半径である。

図2 梁1,梁2,結合部分の応力,分布荷重

図2に梁1、梁2および結合部分に作用する応力を示す。 *M*₁, *M*₂, *N*₁, *N*₂, *Q*₁, *Q*₂ は曲げモーメント, 軸力, 剪断力で ある。t, v は結合部分に作用するズレ応力, 剥離応力で ある。R, R,は梁1,梁2の図心に対する曲率半径である。 各々の梁の図心位置に材軸,法線方向の分布荷重,分布モ ーメントは $qz_1, qx_1, m_1, qz_2, qx_2, m_2$ が作用している。

3. 外力による軸力、剪断力、曲げモーメント

梁1,梁2が結合されている合成梁に作用する外力は釣り 合っていなければならない。図3に合成円弧アーチ梁に 作用する外力を示す。

図3 外力による軸力、剪断力、曲げモーメント

外力*M_{ex}*, *N_{ex}*, *Q_{ex}*は(1)式から(3)式で与えられる。

$$N_{ex}(\phi) = N_{ex0}\cos(\phi) + Q_{ex0}\sin(\phi) + N_{ex_e}(q_{xi}, q_{zi}, m_i)$$
(1)

$$Q_{ex}(\phi) = -N_{ex0}\cos(\phi) + Q_{ex0}\sin(\phi) + Q_{ex} e^{(q_{xi'} q_{zi'} m_i)}$$
(2)

$$M_{ex}(\phi) = M_{ex0} - N_{ex0} R_G \left\{ 1 - \cos(\phi) \right\} + Q_{ex0} R_G \sin(\phi)$$
(3)
+ $M_{ex0} \left(a + a + m_e \right)$

$$\begin{array}{l} \sum_{x=1}^{n} e_{x_{2}} e_{x_{2}} q_{z} e_{x_{1}} \\ z \in \mathcal{T}, \\ q_{x} = q_{x1} + q_{x2}, \quad q_{z} = q_{z1} + q_{z2}, \quad m = m_{1} + m_{2} \end{array}$$

また分布荷重による外力の釣合からMere, Nere, Qereは (4) 式から(6) 式を満たさなければならない。

$$\left(\frac{d^2}{d\phi^2} + I\right) N_{ex_e} = -R_G \left(\frac{dq_z}{d\phi} + q_x\right) \tag{4}$$

$$\left(\frac{d^2}{d\phi^2} + 1\right)Q_{ex_e} = -R_G\left(\frac{dq_x}{d\phi} - q_z\right)$$
(5)

$$\frac{d}{d\phi} \left(\frac{d^2}{d\phi^2} + 1 \right) M_{ex_e} = -R_g^2 \left(\frac{dq_x}{d\phi} - q_z \right) - \left(\frac{d^2 m_1}{d\phi^2} + m_1 \right) \tag{6}$$

 M_{ext}, N_{ext} Qeat は未知量である。

4. 助変数

 $\perp M$

以下に示す助変数を使用して基本式を作成する。

$$\begin{split} R_{1} &= R_{t} + e_{1}, \ \overline{K}_{a1} = K_{a1} / R_{1}, \ \overline{K}_{b1} = K_{b1} / R_{1}^{2} \\ R_{2} &= R_{t} + e_{2}, \ \overline{K}_{a2} = K_{a2} / R_{2}, \ \overline{K}_{b2} = K_{b2} / R_{2}^{2} \\ \overline{K}_{v} &= K_{v} \cdot R_{t}, \quad \overline{K}_{t} = K_{t} \cdot R_{t}, \quad \ell_{G} = e_{1} + e_{2} \\ \widetilde{K} &= \frac{K_{a1} \cdot K_{a2}}{K_{a1} + K_{a2}}, \\ \overline{K}_{a} &= \frac{\overline{K}_{a1} \cdot \overline{K}_{a2}}{\overline{K}_{a1} + \overline{K}_{a2}}, \ \overline{K}_{b} &= \overline{K}_{a1} + \overline{K}_{a2} \\ \overline{K}_{b} &= \frac{\overline{K}_{b1} \cdot \overline{K}_{b2}}{\overline{K}_{b1} + \overline{K}_{b2}}, \ \overline{\Sigma}\overline{K}_{b} = \overline{K}_{b1} + \overline{K}_{b2} \end{split}$$

5. 軸力 N₁, N₂

軸力N1, N2は図4(b) に示されている様に各々の梁の材 軸方向の変位が等しくなる成分と対軸力 T で表される。

各々の梁の材軸方向の変位が等しくなる成分により材軸 は伸びるので、図4(a)の破線で示されている様に曲率半 径は大きくなる。これより軸力 N_1 , N_2 に関して(7)式 (8) 式が得られる。

$$N_{I} = \frac{\overline{K}_{a1}}{\Sigma \overline{K}_{a}} \Sigma N + \frac{\overline{K}_{a2} N_{I} - \overline{K}_{a1} N_{2}}{\Sigma \overline{K}_{a}} = \frac{\overline{K}_{a1}}{\Sigma \overline{K}_{a}} N_{ex} + T$$
(7)

$$N_{2} = \frac{\overline{K}_{a2}}{\Sigma \overline{K}_{a}} \Sigma N - \frac{\overline{K}_{a2} N_{1} - \overline{K}_{a1} N_{2}}{\Sigma \overline{K}_{a}} = \frac{\overline{K}_{a2}}{\Sigma \overline{K}_{a}} N_{ex} - T$$
(8)

ここで、

 $\Sigma N = N_1 + N_2 = N_{ex}$

対軸力TとN1,N2の関係は(9)式となる。

$$T = \frac{\overline{K}_{a2}N_1 - \overline{K}_{a1}N_2}{\Sigma \overline{K}_a} = \overline{K}_a \left(\frac{N_1}{\overline{K}_{a1}} - \frac{N_2}{\overline{K}_{a2}}\right)$$
(9)

6. 曲げモーメントM₁, M₂

曲げモーメント*M_b M*₂ は図5に示されている様に梁1, 梁2に同じ曲率変化を与える成分と逆向きの曲率変化を 与える成分*M_a*で表される。

図5曲げモーメント

同じ曲率変化を与える成分で結合部分にズレ応力tが生じ、逆向きの曲率変化を与える成分で押し・剥離応力vが生ずる。これより曲げモーメント M_1 M_2 に対して(10)式、(11)式が得られる。

$$M_{I} = \frac{\overline{K}_{bI}}{\Sigma \overline{K}_{b}} \Sigma M + \frac{\overline{K}_{b2} M_{I} - \overline{K}_{bI} M_{2}}{\Sigma \overline{K}_{b}} = \frac{\overline{K}_{bI}}{\Sigma \overline{K}_{b}} \Sigma M + M_{v}$$
(10)

$$M_{2} = \frac{\overline{K}_{b2}}{\Sigma \overline{K}_{b}} \Sigma M - \frac{\overline{K}_{b2} M_{1} - \overline{K}_{b1} M_{2}}{\Sigma \overline{K}_{b}} = \frac{\overline{K}_{b2}}{\Sigma \overline{K}_{b}} \Sigma M + M_{v}$$
(11)
$$\Xi \Xi \overline{C},$$

 $M_1 + M_2 = M_{ex} + T \ell_G$

M,は (12) 式で計算される。

$$M_{v} = \overline{K}_{b} \left(\frac{M_{I}}{\overline{K}_{bI}} - \frac{M_{2}}{\overline{K}_{b2}} \right) = \frac{\overline{K}_{b}}{\overline{K}_{v}} \Delta v R_{t}$$

$$\Xi \equiv \overline{C},$$

$$\Delta = \frac{d^{2}}{d\phi^{2}} + I$$
(12)

また円弧梁の曲げモーメント*M*と曲率 *1*/*ρ*,法線方向変位 *w*と曲率 *1*/*ρ*の関係

$$\frac{1}{\rho_1} - \frac{1}{\rho_2} = \frac{M_1}{\overline{K}_{b1}} - \frac{M_2}{\overline{K}_{b2}} = -\Delta (w_1 - w_2) R_t = \frac{\Delta v R_t}{\overline{K}_v}$$
$$\frac{M_1}{\overline{K}_{b1}} - \frac{M_2}{\overline{K}_{b2}} = \frac{\Delta v R_t}{\overline{K}_v}$$

から, *M*₁, *M*₂ は *Д*, *T* で表される。

$$M_{I} = \frac{\overline{K}_{b}}{\overline{K}_{v}} \Delta v R_{t} + \frac{\overline{K}_{bI}}{\Sigma \overline{K}_{b}} (M_{ex} + T \ell_{G})$$
(13)

$$M_{2} = -\frac{\overline{K}_{b}}{\overline{K}_{v}} \Delta v R_{t} + \frac{\overline{K}_{b2}}{\Sigma \overline{K}_{b}} (M_{ex} + T \ell_{G})$$
(14)

6. 梁1,梁2の釣合い式

円弧梁1,2の釣り合い式は

$$\frac{dN_I}{d\phi} - Q_I + tR_t + q_{zI}R_I = 0 \tag{15a}$$

$$\frac{dN_2}{d\phi} - Q_2 - tR_t + q_{z2}R_2 = 0 \tag{15b}$$

$$\frac{dQ_I}{d\phi} + N_I + vR_t + q_{xI}R_I = 0 \tag{16a}$$

$$\frac{dQ_2}{d\phi} + N_2 - vR_t + q_{x2}R_1 = 0 \tag{16b}$$

$$\frac{dM_1}{d\phi} - Q_1 R_1 + tR_1 e_1 + m_1 = 0 \tag{17a}$$

$$\frac{dM_2}{d\phi} - Q_2 R_2 + tR_t e_2 + m_2 = 0 \tag{17b}$$

7. $tR_t = tRt(M_v, T)$

(

釣合い式(15a)式から(17b)式と(10)式,(11) 式を使い若干の演算により結合位置の単位材軸長さ当り のズレ応力**t***R*_tを計算すると(18)式となる。

$$\begin{split} tR_t &= F_T T^{(1)} + \frac{1}{R_t} M_v^{(1)} + F_M M_{ex}^{(1)} + F_{qz} \, \tilde{q}_z \qquad (18) \\ &\simeq \simeq & \sim \\ F_T &= -\frac{\tilde{K}_a}{R_t \overline{K}_a} \left\{ \frac{\overline{K}_{bl}}{2\overline{K}_b} \left(\frac{\overline{K}_{bl}}{R_l \overline{K}_{al}} - \frac{\overline{K}_{b2}}{R_2 \overline{K}_{a2}} \right) \right\} \\ F_M &= \frac{\tilde{K}_a}{R_t \overline{K}_a} \frac{1}{2\overline{K}_b} \left(\frac{\overline{K}_{bl}}{R_l \overline{K}_{al}} - \frac{\overline{K}_{b2}}{R_2 \overline{K}_{a2}} \right) \\ F_{qz} &= -\frac{\tilde{K}_a}{R_t} \\ \tilde{q}_x &= \frac{q_{zl} R_l - m_l}{\overline{K}_{al}} - \frac{q_{z2} R_2 - m_2}{\overline{K}_{al}} \end{split}$$

7. $v R_t = v Rt(M_v, T)$

釣合い式(15a)式から(17b)式と(10)式,(11) 式を使い若干の演算により結合位置の単位材軸長さ当り のズレ応力vR_tを計算すると (19) 式となる。 vR_t = - T+G_T T^{(2)]} - $\frac{1}{R_t} M_v^{(2)} + G_M M_{ex}^{(2)} + G_N N_{ex} + G_q \tilde{q}_x + G_{qz} \tilde{q}_z^{(1)}$ (19) ここで、 $G_T = \frac{\overline{K}_b \ell_G^2}{R_I R_2 \Sigma \overline{K}_b} + F_T \left\{ \frac{1}{\overline{K}_b} - \frac{R_t \left(R_I \overline{K}_{bl} + R_2 \overline{K}_{b2} \right)}{R_I R_2 \overline{K}_{bl} \overline{K}_{b2}} \right\}$ $G_M = \frac{\overline{K}_b \ell_G}{R_I R_2 \Sigma \overline{K}_b} + F_M \left\{ \frac{1}{\overline{K}_b} - \frac{R_t \left(R_I \overline{K}_{bl} + R_2 \overline{K}_{b2} \right)}{R_I R_2 \overline{K}_{bl} \overline{K}_{b2}} \right\}$ $G_N = \frac{1}{\overline{K}_a} \left(\frac{\overline{K}_{all}}{\overline{K}_{bl}} - \frac{\overline{K}_a 2}{\overline{K}_{b2}} \right)$ $G_{qz} = -\overline{K}_b$ $G_{qz} = \frac{R_t}{\overline{K}_a} \left(\frac{1}{\overline{K}_b} - \frac{R_I \overline{K}_{b1} + R_2 \overline{K}_{b2}}{R_I R_2 \overline{K}_{b1} \overline{K}_{b2}} \right)$

8. 結合バネの応力t R_t, vR_t と梁1, 梁2の軸力N₁, N₂ と剪断力Q₁, Q₂との関係

結合部分のズレ応力、押し・剥離応力は図6に示す様に結合部分の押し・剥離バネ,ズレバネで生ずると考える。

図6ズレ応力、押し・剥離応力

ズレバネ,押し・剥離バネに生ずる応力は梁1,梁2の単 位材軸長さ当りの法線,接線方向の力と釣合う。

図6を参照し梁1,梁2の釣合い式を使い*tR_b* vR_tを梁1, 梁2の軸力N_b N₂と剪断力Q_b Q₂ で表すと(20)式 (21) 式となる。

$$tR_{t} = -\overline{K}_{a} \left(\frac{p_{t1}}{\overline{K}_{al}} - \frac{p_{t2}}{\overline{K}_{a2}} \right)$$

$$(20)$$

$$\Box \equiv \overline{\nabla},$$

$$p_{t1} = \frac{dN_{I}}{d\phi} - Q_{I} + q_{zI}R_{I}$$

$$p_{t3} = \frac{dN_{2}}{d\phi} - Q_{2} + q_{z2}R_{2}$$

$$vR_{t} = -\overline{K}_{b} \left(\frac{p_{v1}}{\overline{K}_{b1}} - \frac{p_{v2}}{\overline{K}_{b2}} \right)$$

$$\Box \equiv \overline{\nabla},$$

$$p_{v1} = N_{I} + \frac{dQ_{I}}{d\phi} + q_{xI}R_{I}$$

$$p_{v2} = N_{2} + \frac{dQ_{2}}{d\phi} + q_{x2}R_{2}$$

9. 不静定力T, M_vと曲げモーメント, 軸力

不静定力を合成作用による対軸力Tと押し剥離応力に より梁1,梁2に生ずる逆向きの対曲げモーメントM_vとす ると、ズレ応力,押し・剥離応力,曲げモーメント,軸力 は(22)式から(26)式でT,M_vで表される。

$$tR_{t} = F_{T} \cdot T^{(1)} + \frac{1}{R_{t}} M_{v}^{(1)} + F_{M} \cdot M_{ex}^{(1)} + F_{qz} \cdot \tilde{q}_{z}$$
(22)

$$vR_t = -T + G_T \cdot T^{(2)} - \frac{1}{R_t} M_v^{(2)} + G_M \cdot M_{ex}^{(2)} + G_N \cdot N_{ex}$$
(23)

$$+F_{qx} \cdot \tilde{q}_{x} + G_{qz} \cdot \tilde{q}_{z}^{(1)}$$

$$M_{I} = M_{v} + \frac{\overline{K}_{bI}}{\Sigma \overline{K}_{bI}} (M_{ex} + T\ell_{G})$$
(24)

$$M_2 = -M_v + \frac{\overline{K}_{b2}}{\Sigma \overline{K}_{b2}} \left(M_{ex} + T \ell_G \right)$$
⁽²⁵⁾

$$N_{I} = \frac{\overline{K}_{aI}}{\overline{\Sigma}\overline{K}_{a}} N_{ex} + T$$
(26)

$$N_2 = \frac{\overline{K}_{a2}}{\overline{\Sigma K}_a} N_{ex} + T \tag{27}$$

9. 係数

基本式を作成するに際し梁1,梁2,結合部分の剛性, 曲率半径等,合成円弧アーチ梁の形状、断面性能値から 構成される以下の係数を導入する。

$$\begin{split} F_{\theta} &= \frac{R_{t} \overline{K}_{a}}{\widetilde{K}}, \quad F_{\Delta} = \frac{1}{R_{t}}, \quad F_{qz} = -\frac{K_{a}}{R_{t}} \\ F_{T} &= -\frac{\widetilde{K}_{a}}{R_{t} \overline{K}_{a}} \left\{ 1 - \frac{\overline{K}_{a} \ell_{G}}{2 \overline{K}_{b}} \left(\frac{\overline{K}_{b1}}{R_{I} \overline{K}_{a1}} - \frac{\overline{K}_{b2}}{R_{2} \overline{K}_{a2}} \right) \right\} \end{split}$$

$$\begin{split} F_{M} &= \frac{\widetilde{K}_{a}}{R_{t}\overline{K}_{a}\mathcal{L}\overline{K}_{b}} \left(\frac{\overline{K}_{b1}}{R_{I}\overline{K}_{a1}} - \frac{\overline{K}_{b2}}{R_{2}\overline{K}_{a2}} \right) \\ G_{A} &= -\frac{1}{R_{t}}, \quad G_{T} = \frac{\overline{K}_{b}\ell_{G}^{2}}{R_{I}R_{2}\mathcal{L}\overline{K}_{b}} + F_{T} \left(\frac{1}{\overline{K}_{b}} - R_{t} \cdot \frac{1}{\overline{K}_{b}\overline{R}} \right) \\ G_{M} &= \frac{\overline{K}_{b}\ell_{G}}{R_{I}R_{2}\mathcal{L}\overline{K}_{b}} + F_{T} \left(\frac{1}{\overline{K}_{b}} - R_{t} \cdot \frac{1}{\overline{K}_{b}\overline{R}} \right) \\ G_{N} &= -\overline{K}_{b} \left(\frac{\overline{K}_{a1}}{\overline{K}_{b1}} - \frac{\overline{K}_{a2}}{\overline{K}_{b2}} \right) \\ G_{qx} &= -\overline{K}_{b}, \quad G_{qz} = \frac{R_{t}}{\widetilde{K}_{a}} \left(\frac{1}{\overline{K}_{b}} - R_{t} \cdot \frac{1}{\overline{K}_{b}\overline{R}} \right) \end{split}$$

10. 基本式

図2 に示されている合成円弧アーチ梁の系の補足仕事 式をT, M, で変分して不静定力T, M, に関する微分方程 式(基本式)を導く。補足仕事は(28)式で計算される。 $U_c = U_{ct} + U_{cv} + U_{cM} + U_{cN}$ (28) ここで、 $U_{ct} = \frac{1}{2} \int \frac{\left(t R_t\right)^2}{\overline{K}} d\phi, \quad U_{cv} = \frac{1}{2} \int \frac{\left(v R_t\right)^2}{\overline{K}} d\phi$ $U_{cN} = \frac{1}{2} \int \frac{N_1^2}{\overline{K}} \, d\phi + \frac{1}{2} \int \frac{N_2^2}{\overline{K}} \, d\phi$ $U_{cM} = \frac{1}{2} \int \frac{M_1^2}{R_1 \overline{K}_{11}} d\phi + \frac{1}{2} \int \frac{M_2^2}{R_2 \overline{K}_{12}} d\phi$ $U_{ct} = \frac{1}{2\overline{K}_{t}} \int \left(F_{T} \cdot T^{(1)} + \frac{1}{R_{t}} M_{v}^{(1)} + F_{M} \cdot M_{ex}^{(1)} + F_{qz} \cdot \tilde{q}_{z} \right)^{2} d\phi$ $U_{cv} = \frac{1}{2\overline{K}} \int \left(-T + G_T \cdot T^{(2)} - \frac{1}{R_t} M_v^{(2)} + G_M \cdot M_{ex}^{(2)} \right)$ $+G_N \cdot N_{ex} + F_{qx} \cdot \tilde{q}_x + G_{qx} \cdot \tilde{q}_z^{(1)} \Big)^2 d\phi$ $U_{cM} = \frac{1}{2R_{1}\overline{K}_{b1}} \int \left\{ M_{v} + \frac{\overline{K}_{b1}}{2\overline{K}_{b}} \left(M_{ex} + T\ell_{G} \right) \right\}^{2} d\phi$ $+\frac{1}{2R_{o}\overline{K}_{vo}}\int\left\{M_{v}+\frac{\overline{K}_{b2}}{\overline{\Sigma}\overline{K}_{v}}\left(M_{ex}+T\ell_{G}\right)\right\}^{2}d\phi$ $U_{cN} = \frac{1}{2\overline{K}_{-1}} \int \left(\frac{\overline{K}_{aI}}{\overline{\Sigma}\overline{K}_{-1}} N_{ex} + T\right)^2 d\phi$ $+\frac{1}{2\,\overline{K}_{a2}}\int\left(\frac{\overline{K}_{a2}}{\overline{\Sigma}\overline{K}_{a}}N_{ex}-T\right)^{2}d\phi$

UcをT, Mvで変分して基本式 (29) 式, (39) 式を得る。

 $\delta U_c / \delta T$ から

 $\delta U_{a}/\delta M_{a}$ mb

$$\begin{split} &-G_T \cdot M_v^{(4)} + \left(-\frac{1}{\overline{K}_v R_t} + \frac{F_T}{\overline{K}_t R_t} \right) M_v^{(2)} - \frac{\ell_G^2}{R_I R_2} M_v + \frac{G_T^{(2)}}{\overline{K}_v} T^{(4)} \\ &- \left(\frac{2 G_T}{\overline{K}_v} + \frac{F_T^2}{\overline{K}_t} \right) T^{(2)} + \left\{ \frac{1}{\overline{K}_a} + \frac{1}{\overline{K}_v} + \left(\frac{\overline{K}_{b1}}{R_I} + \frac{\overline{K}_{b2}}{R_2} \right) \frac{\ell_G^2}{\left(\overline{z\overline{K}}_b \right)^2} \right\} T \\ &+ \frac{G_T G_M}{\overline{K}_v} M_{ex}^{(4)} - \left(\frac{G_M}{\overline{K}_v} + \frac{F_T F_M}{\overline{K}_t} \right) M_{ex}^{(2)} + \frac{\ell_G}{\left(\overline{z\overline{K}}_b \right)^2} \left(\frac{\overline{K}_{b1}}{R_I} + \frac{\overline{K}_{b2}}{R_2} \right) M_{ex} \\ &+ \frac{G_T G_N}{\overline{K}_v} N_{ex}^{(2)} - \frac{G_N}{\overline{K}_v} N_{ex} + \frac{G_T G_{qx}}{\overline{K}_v} \tilde{q}^{(2)} - \frac{G_{qx}}{\overline{K}_v} \tilde{q}_x + \frac{G_T G_{qz}}{\overline{K}_v} \tilde{q}_z^{(3)} \\ &- \left(\frac{F_T F_{qz}}{\overline{K}_t} + \frac{G_{qz}}{\overline{K}_v} \right) \tilde{q}_z^{(1)} = 0 \end{split}$$

$$\frac{1}{\overline{K}_{v}R_{t}^{2}}M_{v}^{(4)} - \frac{1}{\overline{K}_{t}R_{t}^{2}}M_{v}^{(2)} + \left(\frac{1}{R_{1}\overline{K}_{b1}} + \frac{1}{R_{2}\overline{K}_{b2}}\right)M_{v} - \frac{G_{T}}{\overline{K}_{v}R_{t}}T^{(4)}$$
$$- \left(-\frac{1}{\overline{K}_{v}R_{t}} + \frac{1}{\overline{K}_{t}R_{t}}\right)T^{(2)} - \frac{\ell_{g}^{2}}{R_{1}R_{2}\Sigma\overline{K}_{b}}T - \frac{G_{M}}{\overline{K}_{v}R_{t}}M_{ex}^{(4)} - \frac{F_{M}}{\overline{K}_{t}R_{t}}M_{ex}^{(2)}$$
$$- \frac{\ell_{g}}{R_{1}R_{2}}\frac{1}{2\overline{K}_{b}}M_{ex} - \frac{G_{N}}{\overline{K}_{v}R_{t}}N_{ex}^{(2)} - \frac{G_{qx}}{\overline{K}_{v}R_{t}}\tilde{q}_{x}^{(2)} - \frac{G_{qz}}{\overline{K}_{v}R_{t}}\tilde{q}_{z}^{(3)}$$
$$- \frac{F_{qz}}{\overline{K}_{t}R_{t}}\tilde{q}_{z} = 0$$
(30)

 $\delta U_{CM} / \delta T$ から得られる (29) 式に M_v が含まれるので, 直線合成梁の様に $\delta U_{CM} / \delta T$ のみから直接 $v \epsilon T$ の関数 として求めることは出来ない。

(29) 式と(30) 式から *M_v*を消去して *T* に関する6 階の微分方程式が得られる。(22) 式 と(23) 式から*vR_t*が *T*の関数として得られる。

$$\begin{split} c_{6} T^{(6)} + c_{4} T^{(4)} + c_{2} \cdot T^{(2)} + c_{0} \cdot T \\ &= d_{6} M_{ex}^{(6)} + d_{4} \cdot M_{ex}^{(4)} + d_{2} \cdot M_{ex}^{(2)} + d_{0} \cdot M_{ex} \\ &+ e_{4} \cdot N_{ex}^{(4)} + e_{2} \cdot N_{ex}^{(2)} + e_{0} \cdot N_{ex} + f_{4} \cdot \tilde{q}_{x}^{(4)} + f_{2} \cdot \tilde{q}_{x}^{(2)} + f_{0} \cdot \tilde{q}_{x} \\ &+ g_{5} \cdot \tilde{q}_{z}^{(5)} + g_{3} \cdot \tilde{q}_{z}^{(3)} + g_{1} \cdot \tilde{q}_{z}^{(1)} \end{split}$$
(31)

$$\begin{split} v R_t^{(4)} + v R_t^{(2)} + \overline{K} \cdot v R_t \\ &= \frac{\overline{K}_v R_t}{\overline{K}_b} \left(G_T \cdot T^{(2)} - T + G_M \cdot M_{ex}^{(2)} + G_N \cdot N_e \right. \\ &+ G_{qx} \cdot \tilde{q}_x + G_{qz} \cdot \tilde{q}_z^{(1)} \right) \quad (32) \end{split}$$

$$vR_t = G_T \cdot T^{(2)} - T + G_M \cdot M_{ex}^{(2)} + G_N \cdot N_{ex} + G_{qx} \cdot \tilde{q}_x + G_{qz} \cdot \tilde{q}_z^{(1)}$$
(32a)

 $\overline{K}_{v} \rightarrow \infty$ の場合 vR_{t} は

$$\begin{split} & = : = : \vec{\nabla}, \\ & c_6 = -\frac{1 + F_T^2 + G_T^2}{R_t^2 \, \overline{K}_v \, \overline{K}_t} \\ & c_4 = \frac{G_T^2}{\overline{K}_v} \left(\frac{1}{R_I \, \overline{K}_{bl}} + \frac{1}{R_2 \, \overline{K}_{b2}} \right) \\ & + \frac{1}{R_t^2 \, \overline{K}_v} \left\{ \frac{1}{\overline{K}_a} + \frac{1}{\overline{K}_v} + \frac{\ell_G^2}{\left(\Sigma \overline{K}_b \right)^2} \left(\frac{\overline{K}_{bl}}{R_I} + \frac{\overline{K}_{b2}}{R_2} \right) \right\} \\ & - \frac{2 \left(G_T + F_T \right)}{R_t^2 \, \overline{K}_v \, \overline{K}_t} - \frac{1}{R_t^2 \, \overline{K}_v} - \frac{2 \, G_T \, \ell_G^2}{R_I \, R_2 \, R_t \, \overline{K}_v \, \Sigma \overline{K}_b} \\ & c_2 = - \left(\frac{2 \, G_T}{\overline{K}_v} + \frac{F_T^2}{\overline{K}_t} \right) \left(\frac{1}{R_I \, \overline{K}_{b1}} + \frac{1}{R_2 \, \overline{K}_{b2}} \right) \\ & - \frac{1}{\overline{K}_t \, R_t^2} \left\{ \frac{1}{\overline{K}_a} + \frac{1}{\overline{K}_v} + \frac{\ell_G^2}{\left(\Sigma \overline{K}_b \right)^2} \left(\frac{\overline{K}_{b1}}{R_I} + \frac{\overline{K}_{b2}}{R_2} \right) \right\} \\ & - \frac{2 \, \ell_G^2}{R_I \, R_2 \, R_t \, \Sigma \overline{K}_b} \left(\frac{F_T}{\overline{K}_t} - \frac{1}{\overline{K}_v \, R_t} \right) \\ & c_0 = \left(\frac{1}{R_I \, \overline{K}_{b1}} + \frac{1}{R_2 \, \overline{K}_{b2}} \right) \left\{ \frac{1}{\overline{K}_a} + \frac{\overline{K}_b}{R_2} \\ & + \frac{\ell_G^2}{\left(\Sigma \overline{K}_b \right)^2} \left(\frac{\overline{K}_{b1}}{R_I} + \frac{\overline{K}_{b2}}{R_2} \right) \right\} - \frac{\ell_G^4}{R_I^2 \, R_2^2 \, \left(\Sigma \overline{K}_b \right)^2} \end{split}$$

$$\begin{split} d_{6} &= \frac{G_{T}(F_{M}+G_{M})+F_{T}\cdot F_{M}}{R_{t}^{2}\overline{K}_{v}\overline{K}_{t}} \\ d_{4} &= -\frac{F_{M}+G_{M}}{R_{t}^{2}\overline{K}_{v}\overline{K}_{t}} + \frac{\ell_{G}(G_{T}+G_{M}\ell_{G})}{R_{I}R_{2}R_{t}2\overline{K}_{b}} \\ &- \frac{G_{T}G_{M}}{\overline{K}_{v}} \left(\frac{1}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \\ &- \frac{\ell_{G}}{R_{t}^{2}\overline{K}_{v}(2\overline{K}_{b})^{2}} \left(\frac{\overline{K}_{bI}}{R_{I}} + \frac{\overline{K}_{b2}}{R_{2}}\right) \\ d_{2} &= \frac{\ell_{G}}{R_{I}R_{2}R_{t}2\overline{K}_{b}} \left(-\frac{1}{\overline{K}_{v}} + \frac{F_{T}+F_{M}\ell_{G}}{\overline{K}_{t}}\right) \\ &+ \left(\frac{G_{M}}{\overline{K}_{v}} + \frac{F_{T}F_{M}}{\overline{K}_{t}}\right) \left(\frac{1}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \\ d_{0} &= \frac{\ell_{G}}{R_{t}^{2}\overline{K}_{v}(2\overline{K}_{b})^{2}} \left(\frac{\overline{K}_{bI}}{R_{I}^{2}R_{2}^{2}} - \left(\frac{1}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \left(\frac{\overline{K}_{bI}}{R_{I}} + \frac{\overline{K}_{b2}}{R_{2}}\right) \right) \\ e_{4} &= \frac{G_{N}(1+G_{T})}{R_{t}^{2}\overline{K}_{v}\overline{K}_{t}} \\ e_{2} &= \frac{G_{N}}{\overline{K}_{v}}R_{t} \left(\frac{\ell_{G}^{2}}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \\ e_{0} &= \frac{G_{N}}{\overline{K}_{v}} \left(\frac{1}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \\ e_{0} &= \frac{G_{N}}{\overline{K}_{v}} \left(\frac{1}{R_{I}\overline{K}_{bI}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \end{split}$$

$$\begin{split} f_{4} &= \frac{G_{qx}\left(1+G_{T}\right)}{\overline{K}_{v}\overline{K}_{t}R_{t}^{2}} \\ f_{2} &= \frac{G_{qx}}{\overline{K}_{v}} \left\{ -\left(\frac{1}{R_{I}\overline{K}_{b1}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) - \frac{1}{\overline{K}_{t}R_{t}^{2}} + \frac{\ell_{G}^{2}}{R_{I}R_{2}R_{t}2\overline{K}_{b}} \right\} \\ f_{0} &= \frac{G_{qx}}{\overline{K}_{v}} \left(\frac{1}{R_{I}\overline{K}_{b1}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) \\ g_{5} &= \frac{1+G_{T}G_{qz} + F_{T}F_{qz}}{\overline{K}_{v}\overline{K}_{t}R_{t}^{2}} + \frac{G_{T}F_{qz}}{\overline{K}_{v}^{2}R_{t}^{2}} \\ g_{3} &= -\frac{G_{T}G_{qz}}{\overline{K}_{v}} \left(\frac{1}{R_{I}\overline{K}_{b1}} + \frac{1}{R_{2}\overline{K}_{b2}}\right) + \frac{F_{qz} - G_{qz}}{\overline{K}_{v}\overline{K}_{t}R_{t}^{2}} \\ &- \frac{F_{qz}}{\overline{K}_{v}^{2}R_{t}^{2}} - \frac{F_{T}F_{qz}}{\overline{K}_{t}^{2}R_{t}^{2}} + \frac{G_{qz}\ell_{G}^{2}}{R_{I}R_{2}R_{t}\overline{K}_{v}}2\overline{K}_{b}} \\ g_{I} &= \left(\frac{F_{T}F_{qz}}{\overline{K}_{v}} + \frac{G_{qz}}{\overline{K}_{v}}\right) + \frac{F_{qz}R_{t}^{2}R_{t}^{2}}{R_{I}R_{2}R_{t}\overline{K}_{v}}2\overline{K}_{b}} \\ \tilde{q}_{z} &= \frac{q_{xI}R_{I} + m_{I}^{(I)}}{\overline{K}_{b1}} + \frac{q_{x2}R_{2} + m_{2}^{(I)}}{\overline{K}_{a2}} \\ \tilde{q}_{z} &= \frac{q_{zI}R_{I} - m_{I}}{\overline{K}_{a1}} + \frac{q_{z2}R_{2} - m_{2}}{\overline{K}_{a2}} \\ (\) &= \frac{d}{d\phi} \end{split}$$

11. 諸量

合成作用による対軸力 T,押し・剥離応力 vR_t が求ま れば諸量は (33) 式から (42) 式で計算される。 ・梁1,梁2の等しい撓み成分

$$\Psi^{(2)} + \Psi = -\frac{M_{ex} + T \cdot \ell_G}{\Sigma \overline{K}_b}$$
(33)

$$M_{2} = -\frac{\overline{K}_{b}}{\overline{K}_{v}} \left(\frac{d^{2}}{d\phi^{2}} + 1\right) v R_{t} + \frac{\overline{K}_{b1}}{\Sigma \overline{K}_{b}} \left(M_{ex} + T \cdot \ell_{G}\right)$$
(34b)

・軸力

$$N_{I} = \frac{\overline{K}_{aI}}{\overline{\Sigma \overline{K}}_{a}} N_{ex} + T$$
(35a)

$$N_2 = \frac{\overline{K}_{al}}{\Sigma \overline{K}_a} N_{ex} - T \tag{35b}$$

・剪断力

$$Q_{1} = \frac{1}{R_{1}} \left(M_{1}^{(1)} + tR_{t} + m_{1} \right)$$
(36a)

$$Q_2 = \frac{1}{R_2} \left(M_2^{(1)} + tR_t + m_2 \right)$$
(36b)

・法線方向の変位(たわみ)

$$W_{I} = \Psi - \frac{\overline{K}_{b2}}{\Sigma \overline{K}_{b}} \frac{v R_{t}}{\overline{K}_{v}}$$
(37a)

$$W_{2} = \Psi + \frac{\overline{K}_{bI}}{\Sigma \overline{K}_{b}} \frac{vR_{t}}{\overline{K}_{v}}$$
(37b)

・傾斜

$$\begin{split} \theta_{I} &= \frac{1}{R_{I}} \left(\frac{dW_{I}}{d\phi} + \int_{0}^{\phi} W_{I} \, d\phi \right) \\ &= \frac{1}{R_{I}} \left\{ \Psi^{(1)} + \int_{0}^{\phi} \Psi d\phi - \frac{\overline{K}_{b2}}{\overline{K}_{v} \Sigma \overline{K}_{b}} \left(v R_{t}^{(1)} + \int_{0}^{\phi} v R_{t} \, d\phi \right) \right\} \quad (38a) \\ \theta_{2} &= \frac{1}{R_{I}} \left(\frac{dW_{I}}{d\phi} + \int_{0}^{\phi} W_{I} \, d\phi \right) \\ &= \frac{1}{R_{I}} \left\{ \Psi^{(1)} + \int_{0}^{\phi} \Psi d\phi + \frac{\overline{K}_{b2}}{\overline{K}_{v} \Sigma \overline{K}_{b}} \left(v R_{t}^{(1)} + \int_{0}^{\phi} v R_{t} \, d\phi \right) \right\} \quad (38b) \end{split}$$

・材軸方向の変位

$$\begin{split} U_{I} &= \frac{1}{\Sigma \overline{K}_{a}} \int_{0}^{\phi} N_{ex} \, d\phi + \frac{1}{\overline{K}_{a}} \int_{0}^{\phi} T \, d\phi + \int_{0}^{\phi} \Psi d\phi \\ &+ \frac{\overline{K}_{b2}}{\overline{K}_{v} \Sigma \overline{K}_{b}} \int_{0}^{\phi} v R_{t} \, d\phi + U_{0} \end{split} \tag{39a}$$

$$U_{2} = \frac{1}{\Sigma \overline{K}_{a}} \int_{0}^{\phi} N_{ex} d\phi - \frac{1}{\overline{K}_{a}} \int_{0}^{\phi} T d\phi + \int_{0}^{\phi} \Psi d\phi$$
$$- \frac{\overline{K}_{b2}}{\overline{K}_{v} \Sigma \overline{K}_{b}} \int_{0}^{\phi} v R_{t} d\phi + U_{0}$$
(39b)

・押し・剥離応力による対曲げモーメント

$$M_{v} = \frac{\overline{K}_{b}}{\overline{K}_{v}} \left(\frac{d^{2}}{d\phi^{2}} + 1 \right) v R_{t}$$

$$\tag{40}$$

・ズレ応力

$$tR_t = F_T \cdot T^{(1)} + \frac{1}{R_t} M_v^{(1)} + F_M \cdot M_{ex}^{(1)} + F_{qz} \cdot \tilde{q}_z$$
(41)

・ズレによる傾斜

$$\gamma = \frac{tR_t}{\overline{K}_t}$$
(42)

12. 未定係数

未定係数
$$\beta_1$$
から β_{12} は
 $\beta_1 \sim \beta_6$; $c_6 T^{(6)} + c_4 T^{(4)} + c_2 \cdot T^{(2)} + c_0 T = 0$
 $\beta_7 = N_{ex0}, \beta_8 = Q_{ex0}, \beta_9 = M_{ex0}$
 $\beta_{10}, \beta_{11}; \Psi^{(2)} + \Psi = 0$
 $\beta_{12} = U_0$
である。

13. 計算例

図7 に示す曲率半径 400cm で,厚さ16 cm,有効幅240 cm の鉄筋コンクリート床スラブ(梁1)と鉄骨梁 H-400×200

×8×13(梁2)との合成円弧アーチ梁がスパン400 cm の中 央にP=1000Nを受ける場合について計算する。 支持状態は梁1:両端自由,梁2:一端支持,他端固定。

図8計算例

諸元を以下に示す。

$$\begin{split} & E_s = 2.05 \times 10^7 \ \text{N/cm}^2, \qquad E_c = 2.05 \times 10^6 \ \text{N/cm}^2 \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\$$

図9に計算結果を示す。直線合成梁の場合³と違い,曲率の影響が出ている。曲率半径を大きくして行くと直線合成梁の撓み、応力に近づくことは確認している。

14. 結論

結合部のズレ剛性に加え,押し・剥離剛性を考慮した 合成円弧アーチ梁の基本式は直線合成梁の場合と同様, 対軸力 Tの6階の微分方程式となる。押し・剥離剛性を 考慮したことで結合されている各々の梁の支持条件に応 じた計算が出来る。

参考文献

 原田晶利:合成曲線梁の実用基本式について,構造工 学論文集 Vol 42B (1996年3月)
 原田晶利:17-押し・剥離剛性を考慮した合成梁の実 用基本式について,第10回複合・合成構造の活用に関す るシンポジウム,2013年11月21から22日

図9 計算結果

PRACTICAL FORMULA OF COMPOSITE CIRCULAR ARCH BEAM INCLUDED SPLIT_OFF ACTION

Masatoshi HARADA

The present paper is on the practical formula for the composite circular arch beam. Usual availed basical formula of the line composite beam is the 2 order differential equation for the coupled axial force by composite action, if the beam has curvature then the basical equation for the coupled axial force becomes 4 order. We can treat the real supporting conditions by introducing the split_off rigidity at the connected portion of the curved beam, this is realized in this paper. It is shown in this paper that the basical equation.