(45) 鋼・GFRP合成桁の曲げ挙動に関する研究

橋本 国太郎¹・Lee EngMing²・杉浦 邦征³・西崎 到⁴・日比 英輝⁵

¹正会員 京都大学大学院助教 工学研究科社会基盤工学専攻(〒615-8540京都市西京区京都大学桂) E-mail:hashimoto.kunitaro.6s@kyoto-u.ac.jp

2正会員 三井住友建設株式会社(研究時,京都大学大学院生)

³正会員 京都大学大学院教授 工学研究科社会基盤工学専攻(〒615-8540京都市西京区京都大学桂) E-mail:sugiura.kunitomo.4n@kyoto-u.ac.jp

4正会員 土木研究所上席研究員 新材料開発チーム (〒305-8516つくば市南原1番地6) 5正会員 株式会社ヒビ代表取締役 (〒503-1337岐阜県養老郡養老郡養老町直江613-1)

他の繊維補強プラスチックに比べ安価なガラス繊維補強プラスチック(以下, GFRP)を用いた土木構 造物の建設が最近多く見られるようになってきている.しかし,GFRPは弾性係数が鋼材に比べ小さく, 構造物の変形が大きくなるため,鋼部材に比べ大きな構造断面となる.そこで,本研究では,GFRPを用 いた桁の曲げ剛性を大きくするために,GFRP桁にパンチングメタルと呼ばれる孔あき鋼板を積層した 鋼・GFRP合成桁の曲げ挙動を検討する.本研究では曲げ載荷実験および梁理論による理論的な考察を行 った.

それらの結果,積層するパンチングメタルの種類や積層位置の違いで曲げ剛性が変わることがわかった. また,より剛性の大きくなる積層位置やパンチングメタルの種類を確認することができた.

Key Words : glass fiber reinforced polymer, flexural behavior, steel and GFRP composite girder punching metal

1. はじめに

土木分野において, FRP材料を用いた新設構造物 として,近年では,水門¹⁾や歩道橋^{2)~5)}などが建設 されている.また,橋梁の検査路⁶や床版の一部⁷⁾と して使用され始めており、今後の需要が望まれてい る. そのFRPの大きな利点として, 耐食性に優れて おり、軽量であることから、腐食環境が厳しい場所 や大型重機などの出入りが難しい場所では、その利 点が活かされている. また、土木分野では、新設の 構造物には、高強度なCFRPやAFRPに比べ、引張強 度は低いが安価なGFRPが主に用いられている. し かし、このGFRP材料の特徴として、弾性係数が小 さいことから、歩道橋などの構造物に適用した場合, 部材としての曲げ剛性が鋼部材に比べ小さく、たわ みが大きくなり、歩道橋の設計で考慮されているた わみ制限などの使用性や振動などの問題が生じる可 能性がある. 設計では、このたわみを制限内に収め るために、部材断面を大きくしており、鋼部材に比 べ大きな断面となる場合が多い.

本研究では、このGFRP部材の剛性を改善する (大きくする)ことを目的に、図-1に示すように、 著者らが提案している^{8)、9)}鋼板(パンチングメタ ル)をGFRP部材内に積層し、合成構造化した鋼・

図-1 鋼・GFRP合成桁の概要

GFRP合成桁に対し、その曲げ剛性や合成化の程度 などの力学的挙動を載荷実験および理論的な考察に よって検討した.

2. 鋼・GFRP合成桁に用いた材料特性

(1) 材料試験方法

材料試験は鋼もしくはステンレス鋼で製作された パンチングメタルの引張試験とGFRPの引張試験お

(b) SLタイプ(SUS304) 図-3 パンチングメタル引張試験片およびひずみゲージ貼付位置(ひずみゲージ:・)

(a) OF KF									
Test type	Elastic Modulus	Maximum Streng	th Maximum Stra	ain Deissen's Patie					
	(GPa)	(MPa)	$(x10^{-6})$	POISSOILS KALIO					
Bending	36.6	574.2	16631	-					
Tensile	27.4	317.2	8407	0.11					
(b) パンチングメタル									
	Elastic Modulus	Doggon's Datio	Yielding Stress	Tensile Stress					
	(GPa)	Possoii s Katio	(MPa)	(MPa)					
CR-Ave	231.1	-	230.5	317.7					
SL-Ave	210.6	0.33	359.2	662.4					

表-1 材料試験結果(平均值)

よび曲げ試験を行った.GFRPの引張試験および曲 げ試験は,JIS K7161およびJIS K7171に従って行っ た.GFRPの引張試験片の寸法およびひずみゲージ 貼付位置を図-2に示す.図-2に示すように,引張試 験片は,試験機でつかむ部分にアルミタブを貼付し, つかみ部での破壊が生じないようにした.なお,各 試験は,実験供試体5体ずつで行った.

パンチングメタルの引張試験片の寸法およびひず みゲージ貼付位置を図-3に示す.図-3に示すように、 本研究では、十字および円の孔を有する鋼製のパン チングメタル(以下,CR)とステンレス製の長孔 を有するパンチングメタル(以下,SL)の2種類を 用いたため、その2種類で引張試験を実施した.ま た、引張試験片の板厚が小さいため、通常であれば JIS規格で定められている試験片サイズとするが, 孔があることから断面積が小さくなり,強度評価が 難しくなると考えられたため,断面積をある程度の 大きさで確保できる幅を持つ1号試験片と同等のサ イズとした.ひずみゲージは図-3に示すように,断 面の中央に貼付した.なお,引張試験は3体ずつの 実験供試体を用意し行った.

また,それぞれの材料試験は,100t万能試験機を 用いて行った.

(2) 試験結果

材料試験の結果を表-1に示す.パンチングメタル の強度計算には純断面積を使用した.CRタイプの 場合,2種類の形状の孔があるが,その純断面積は,

(a) 側面図 図-4 (b) 断面図(GS-FW供試体の例)

我 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
Spesimen	Material	Dimension (mm)	Steel shape	St	Weight				
		Dimension (mm)		Top Flange	Bottom Flange	Web	(kgf)		
G	GFRP	I-250x180x18x14	-	-	-	-	40.2		
GS-F-CR	GFRP+Steel	I-250x180x18x14	CR	1.6	1.6	-	47.2		
GS-F-SL	GFRP+Steel	I-250x180x18x14	SL	1.6(0.8x2)	1.6(0.8x2)	-	45.8		
GS-F-CR-2	GFRP+Steel	I-250x180x18x14	CR	1.6	4.8(1.6x3)	-	56.4		
GS-FW	GFRP+Steel	I-250x180x18x14	CR	1.6	1.6	1.6x2	55.4		

表-2 実験供試体の種類

実験供試体(寸法単位:mm)

表-3	宝齢世試休の積層構成
12-0	大吹広い作りが見信け及

Specimen	G	GS-F-CR		GS-F-SL		GS-F-CR-2			GS-FW	
Elements	Flange & Web	Top & Bottom Flange	Web	Top & Bottom Flange	Web	Top Flange	Bottom Flange	Web	Top & Bottom Flange	Web
	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1
	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1
	RC800 x 17	RC800 x 15	RC800 x 17	RC800 x 11	RC800 x 17	RC800 x 15	RC800 x 11	RC800 x 17	RC800 x 15	RC800 x 11
	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	RC580 x 1	CSM x 1
Laminated Constitution	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	RC200 x 1	Punching Metal(CR) x 1
	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1	CSM x 1
	-	Punching Metal(CR) x 1	-	Punching Metal(SL) x 1	-	Punching Metal(CR) x 1	Punching Metal(CR) x 1	-	Punching Metal(CR) x 1	RC800 x 2
	-	CSM x 1	-	CSM x 1	-	CSM x 1	CSM x 1	-	CSM x 1	RC580 x 1
	-	-	-	Punching Metal(SL) x 1	-	-	Punching Metal(CR) x 1	-	-	RC200 x 1
	-	-	-	CSM x 1	-	-	CSM x 1	-	-	CSM x 1
	-	-	-	-	-	-	Punching Metal(CR) x 1	-	-	-
	-	-	-	-	-	-	CSM x 1	-	-	-

*RC:ロービングクロス(数字は目付量g/m²), CSM:チョップドストランドマット

孔引きして算出された最小の断面積を用いた.

表-1より、GFRPに関しては、曲げ試験によって 得られた弾性係数が引張試験で得られた弾性係数よ り大きいことがわかる.これは、曲げ試験における 圧縮やせん断剛性の影響が出たものと考えられる. また、パンチングメタルに関しては、引張強度が CRタイプに比べSLタイプの方が大きい.SLタイプ は板厚が小さいことや、CRタイプのパンチングメ タルの孔形状が複雑であるため純断面積の算出方法 の影響も出たものと考えられる.さらに、弾性係数 が通常の鋼材よりも少し大きめに出ているが、これ は、ひずみを1カ所のみで計測しており、その影響 が出たものと考えられる.

3. 鋼・GFRP合成桁の曲げ実験

(1) 実験供試体

鋼・GFRP合成桁の曲げ試験の実験供試体の詳細 を図-4および表-2に示す.これらの図表に示すよう に、実験供試体は、フランジを含めた桁高さ250mm, 幅90mm、ウェブ厚9mm、フランジ厚14mmのC形桁 を背中合わせに接着しI形桁(高さ250mm,幅 180mm、ウェブ厚18mm、フランジ厚14mm)とし

た.表-2に示すように実験供試体は5種類×3体用意 し、合計15体の実験を行った.供試体GはGFRPの みで製作された桁であり、供試体GS-F-CR, GS-F-CR-2, GS-F-SLおよびGS-FWはパンチングメタルと GFRPとの合成桁である. GS-Fシリーズは、上下フ ランジにパンチングメタルを挿入しており、その総 厚およびパンチングメタルの種類(CRタイプおよ びSLタイプ)を変えた.供試体GS-FWは上下フラ ンジおよびウェブにもパンチングメタルを挿入した. 各供試体の積層構成を表-3に示しているが、パンチ ングメタルは、図-4中の断面図にも示すように、上 フランジ最上面、下フランジ最下面、およびウェブ の内側に配置した.供試体GS-F-CR-2の下フランジ では、表中に示すように3層のCRタイプのパンチン グメタルを挿入した.また,SLタイプのパンチン グメタルは板厚がCRタイプの半分であったため, 供試体GS-F-SLでは、供試体GS-F-CRと比較できる ように、SLタイプのパンチングメタルを2層挿入し た.表-2中には、各実験供試体の重量も併せて載せ ているが,これより,G<<GS-F-SL<GS-F-CR<<GS-FW<GS-F-CR-2の順で重くなっていることがわかる. なお,鋼材のみでこの形状の桁を製作した場合,約 160kgfとなる.

(2) 実験方法

実験は、図-4に示すように、単純支持とした供試体中央に集中荷重を載荷する3点曲げ載荷とした. 載荷点および支点には、縦補剛材および載荷板を置き、支点もしくは載荷点での応力集中の影響をなくした.また、図-4中に示すように、実験では、スパン中央および支点の鉛直変位および中央の載荷点から200mm支点側に離れた位置でのウェブ・フランジのひずみを測定した.

4. 実験結果およびその考察

(1) 荷重-変位関係

実験結果として,各供試体の荷重-変位関係を図-5に示す.図-5には,それぞれ3体ずつ行ったすべて の結果を示している.また,それらの結果として, 荷重-変位関係の弾性範囲内の直線から得られる剛 性*K_{EX}*のまとめを表-4中に示している.なお,表中 には,以下に示している梁のたわみに関する式(1) を変形した式(2)より算出できる理論剛性*K_{TH}*も示し ている.この式は,せん断剛性の影響も考慮したテ ィモシェンコ梁理論によるたわみを求める式である. この式中で,鋼とGFRPの合成断面としたときの断

面2次モーメントの算出には、鋼とGFRPの弾性係数 比を用いている.また、そのときのパンチングメタ ルの断面積の算出では、ボルト継手における孔引き 断面積の算出方法の考えに基づき、曲げ引張側では 純断面積を用い、曲げ圧縮側では、総断面積を用い た.さらに、式中のせん断によるたわみの項でのパ ンチングメタルの断面積の算出には純断面積を用い ている.

$$\delta = \delta_f + \delta_s = \frac{PL^3}{48EI} + \frac{PL}{\kappa GA} \tag{1}$$

$$P = 1 / \left(\frac{L^3}{48EI} + \frac{L}{\kappa GA} \right) \delta = K_{TH} \delta$$
(2)

ここで、 δ : ティモシェンコ梁理論による梁中央の たわみ、 δ_f : 曲げモーメントによる梁中央のたわみ (オイラー・ベルヌーイ梁理論によるたわみ),

 δ_s : せん断力による梁中央のたわみ, P: 荷重, L: スパン長, E: 弾性係数, I: 断面2次モーメント, G: せん断弾性係数, κ : せん断補正係数(I断面の 場合 A_w /A), A: 総断面積, A_w : 腹板の断面積であ る.

図-5および表-4より、G供試体はその他のものに 比べ、剛性が小さく、3体の実験結果のばらつきも 大きい結果となった.また、実験で得られた剛性 K_{FX} at, G<GS-F-CR<GS-F-SL<GS-FW<GS-F-CR-20 順番で大きくなっていることがわかる.特に、供試 体GS-F-CR-2は、供試体Gに比べ、1.44倍程度の剛 性の増加となっている. さらに, パンチングメタル の種類の違い(CRとSL)で比較すると、SL供試体 の方が、剛性が大きい.これは、SL供試体では、 鋼板を2枚に分けたことも影響したと思われるが、 孔引きした純断面積がCRより大きいことも影響し 合成効果が大きくなったと考えられる.また、実験 で得られた剛性 K_{EX} を計測した重量 W_{EX} で割った実 験剛性重量比 K_{EX}/W_{EX} で比較すると、GS-F-SLが一番 大きく、 重量に対する剛性の寄与率が一番大きいこ とがわかった.しかし、下フランジにパンチングメ タルの層数を増やしたGS-F-CR-2やウェブにもパン チングメタルを挿入したGS-FWでは、実験剛性重 量比K_{EX}/W_{EX}がGS-F-SLやGS-F-CRの値を下回ったこ とから、下フランジにパンチングメタルを増やした り、ウェブに積層することは、実際の剛性が大きく なるが重量も重くなり,重量という観点からは効率 が悪くなることがわかる.

表-4には、式(1)および(2)より求めた理論剛性K_{TH} 示しているが、すべての供試体で実験の剛性に比べ、 大きな値を示していることがわかる.また、理論剛 性と実験で得られた剛性の比K_{EX}/K_{TH}を示している が、この値がどの供試体でも0.7程度となっている ことから、理論値と一致しない原因は全ての供試体 で共通する理由があると考えられる.考えられる理 由として、この桁の理論剛性を算定するとき、I形 断面として計算しているが、実際の実験供試体はC 形断面をウェブ背面で接着して製作しているため、 実験ではその接着層での変形が出たことで実験で得 られた剛性が理論値に比べ全体的に小さくなったと 推測できる.

次に、CRタイプのパンチングメタルの配置を上下フランジに2枚ずつ(1.6mm×2枚=3.2mm)としたGS-F-CR-3や上フランジに3枚、下フランジに1枚のみ配置したGS-F-CR-4、さらにSLタイプのパンチングメタルを上下フランジに4枚ずつ(0.8mm×4枚=3.2mm)増やしたGS-F-SL-2の理論剛性を表-4中に示している.GS-F-CR-3やGS-F-CR-4はGS-F-CR-2に比べ、剛性は増加するものの、理論剛性重量比 K_{TH}/W_{TH} は、GS-F-CRに比べ若干増加する.一方、

Specimen	K_{EX} (kN/mm)	$K_{EX}/K_{EX(G)}$	<i>K</i> _{TH} (kN/mm)	$K_{TH}/K_{TH(G)}$	K_{EX}/K_{TH}	$\frac{K_{EX}}{W_{EX}}$ (kN/mm/kgf)	W _{TH} (kgf)	K_{TH}/W_{TH} (kN/mm/kgf)
G	8.70	1.000	12.46	1.000	0.698	0.217	40.2	0.310
GS-F-CR	10.97	1.261	16.09	1.291	0.682	0.232	47.2	0.341
GS-F-SL	11.93	1.371	16.68	1.339	0.715	0.261	45.8	0.364
GS-F-CR-2	12.50	1.436	17.85	1.433	0.700	0.222	54.2	0.330
GS-FW	12.01	1.380	18.37	1.474	0.654	0.217	53.2	0.345
GS-F-CR-3	-	-	19.27	1.546	-	-	54.2	0.356
GS-F-CR-4	_	-	19.42	1.558	-	-	54.2	0.358
GS-F-SL-2	-	-	20.48	1.643	-	-	51.4	0.399

表-4 実験結果のまとめ

GS-F-SL-2では、理論剛性重量比がGS-F-SLに比べ 増加しており、パンチングメタルを増やす効果が CRタイプのものより大きくなることがわかる.こ れは、断面2次モーメントを算定するときに、曲げ 引張側の鋼材は純断面積を用いているが、CRタイ プに比べSLタイプのパンチングメタルの方が、純 断面積が大きいことなどが影響していると考えられ

る. なお,理論剛性重量比 K_{TH}/W_{TH} を算定する際の 重量は,実測値ではなく計算した理論重量 W_{TH} を用 いた. この理論重量 W_{TH} の算定では,G供試体から 得られるGFRPの密度と鋼材の密度7.8g/cm³を用いて 算定している.

(2) ひずみ分布

荷重-ひずみ関係および100kN時のひずみの分布を

46 - 6

図-6および図-7に示す. なお,ひずみは橋軸方向の 直ひずみであり,各種類1体の代表値を示している. 図-6中の凡例のWeb1は,上フランジ側のひずみ, Web2は,ウェブ中央付近のひずみ,Web3は下フラ ンジ側のひずみである.

図-6および図-7より、GS-F-CR-2以外の実験供試 体では、上下フランジのひずみがほぼ対称に生じて いるが, GS-F-CR-2では, 下フランジに比べ上フラ ンジのほうが大きなひずみが発生していることがわ かる.これは、パンチングメタルの挿入量の違いに よるものと考えられる. また, ウェブにパンチング メタルを挿入したGS-FWでは、Web1およびWeb3の ひずみが他の供試体に比べ、小さい値となっている ことがわかる.これは、GS-FWでは、ウェブに挿 入したパンチングメタルが、曲げ応力を分担するこ とで、ウェブ表面のGFRPのひずみが小さくなった と考えられる. また、GS-F-SLの上下フランジのひ ずみが他の供試体に比べ小さい値となっていること がわかる.これは、SLタイプのパンチングメタル がCRタイプのものより、有効断面積が大きく、曲 げ応力を分担したためと考えられる.

5. まとめ

本研究では、GFRP桁の剛性を改善するために、 GFRP桁の中に鋼材(パンチングメタル)を積層し た鋼・GFRP合成桁の曲げ挙動を実験および理論的 な考察により検討した.得られた結果を以下に示す.

- 荷重-変位関係から得られた剛性で比較すると CRタイプよりSLタイプのパンチングメタルの方 が剛性が大きくなった.
- 2) また、パンチングメタルの積層数を増やすこと で剛性は、通常のGFRP桁の剛性に比べ40%程度 まで大きくなったが、ほぼ同等の重量でウェブ に積層したGS-FWよりもフランジに積層数を増 やしたGS-F-CR-2の方が剛性は大きくなった.
- 3) ティモシェンコ梁理論による梁のたわみ式を用いた理論的な考察により、SLタイプのパンチングメタルをフランジに積層していくことで、剛

性重量比が大きくなり、より剛性に対する重量 の寄与率が高い合成桁が製作できる可能性があ ることを示した.

4)実験で得られた100kN載荷時のひずみ分布より、 SLタイプのパンチングメタルを積層したGS-F-SLでは、他の供試体より上下フランジのひずみ が小さいことがわかった.これは、CRタイプの パンチングメタルに比べ鋼板の有効断面積が大 きいためと考察した.

参考文献

- 冨山禎仁,西崎到:繊維強化プラスチックの水門設備への適用性に関する検討,土木技術資料,第47巻, 第12号, pp.54-59,2005.12.
- 2) 沖縄県土木建築部中部土木事務所:伊計平良川線ロードパーク連絡歩道橋設計業務報告書,2000.3.
- 中島和俊,安波博道,細沼宏之:全FRP橋梁 自転車 道 13 号橋の設計,製作,および架設,第3回FRP 複合 構造・橋梁に関するシンポジウム,pp.183-186,2009.7.
- 4) 増渕文男:大学の実習授業における GFRP トラス橋の 建設,強化プラスチック協会 強化プラスチックス 第 54巻,第1号, pp.29-34, 2008.
- 5) 野原正行,熊田哲規,宮本成明,川上盛樹:FRP トラ ス歩道橋の設計・施行例,第3回 FRP 複合構造・橋梁 に関するシンポジウム, pp.187-194, 2009.7.
- 6) 久保圭吾,永見研二,山口浩平,日野伸一,稲葉尚文, 青木卓也:道路橋検査路用 FRP 製ブラケットの静的耐 荷性能と試験施工,第4回 FRP 複合構造・橋梁に関す るシンポジウム講演概要集, pp.115-122, 2013.11.
- 7) 久保圭吾,西田正人,河西龍彦,筒井秀樹,松井繁 之:桟橋構造に適用した FRP 合成床版の設計と施工, 第5回道路橋床版シンポジウム講演論文集, pp.315-320, 2006.
- 8) 日比英輝, 佐々木巌, 鷲見幸弘, 西崎 到: GFRP と 鋼材の複合材料の性能評価, 土木学会第 65 回年次学術 講演会講演概要集, CS2-018, pp.35-36, 2010.9.
- 9) EngMing Lee, Kunitaro Hashimoto, Hideki Hibi, Itaru Nishizaki, Kunitomo Sugiura: Flexural behavior study of GFRP and steel composite I-beam under bending, 第4回 FRP 複合構造・橋梁に関するシンポジウム, pp.139-147, 2012.11.

STUDY ON FLEXURAL BEHAVIOR OF STEEL-GFRP COMPOSITE GIRDER

Kunitaro HASHIMOTO, EngMing Lee, Kunitomo SUGIURA, Itaru NISHIZAKI and Hideki HIBI

Recently, infra structures made of glass fiber reinforced polymer (GFRP) which have high durability performance and are chipper than cost of other fiber reinforced polymers have been constructing in Japan. Because elastic modulus of GFRP is lower than that of steel material and the deflection of structure made of GFRP become large, the structural section area of GFRP members become larger than that of steel members. In this study, bending test and theoretical consideration were carried out to study flexural behavior of the steel and GFRP composite girder which are laminated steel plate with many holes called punching metal to increase the bending rigidity of GFRP girder.

From these result, it was seen that the bending rigidity of the composite girders varied due to the differences of kinds of punching metal and laminated position of the metal. And the laminated positions and the kinds of punching metal to increase the bending rigidity of the composite girder were found .