(30) CES部材のせん断性状に関する研究

荒牧 龍馬1・六田 莉那子2・藤本 利昭3

¹正会員 日本大学大学院 生産工学研究科建築工学専攻 (〒275-8575 千葉県習志野市泉町1-2-1) E-mail:ciry13002@g.nihon-u.ac.jp

²正会員 日本大学大学院 生産工学研究科建築工学専攻 (〒275-8575 千葉県習志野市泉町1-2-1) E-mail:ciri13036@g.nihon-u.ac.jp

³正会員 日本大学准教授 生産工学部建築工学科 (〒275-8575 千葉県習志野市泉町1-2-1) E-mail:fujimoto.toshiaki@nihon-u.ac.jp

SRC構造の鉄筋を省略し、繊維補強コンクリート(以下, FRC)を用いた鉄骨コンクリート(以下, CES)構造の実用化に向け、構造性能の検討を行っている。

本研究では、CES構造部材のせん断耐力評価法を検討する基礎資料を整備することを目的とし、せん断破壊が先行するように設計した、内蔵鉄骨および部材幅の異なる6体のCES部材の曲げせん断実験を行い、破壊形状、せん断特性について把握するとともにせん断耐力評価法についての検討を行った。その結果、各試験体とも曲げ耐力に達する前にせん断破壊が生じ、CES部材のせん断耐力評価の基礎データを得ることができた。また、CES部材の終局せん断耐力は、簡略化せん断耐力式におけるコンクリートの有効幅係数を適切に評価することで、部材幅および内蔵鉄骨の差異によらず評価可能であることを明らかとした。

Key Words : CES, fiber reinforced concrete, shear strength, shear behavior

1. はじめに

筆者らは,鉄骨鉄筋コンクリート (Steel Reinforced Concrete:以下, SRC) 構造の鉄筋を省略し,繊維補強 コンクリート (Fiber Reinforced Concrete:以下, FRC) を 用いた鉄骨コンクリート (Concrete Encased Steel:以下, CES) 構造 (図-1 参照)の実用化に向け,構造性能の 検討を行っている¹⁾。

これまでの実験的研究により, CES 構造は SRC 構造 と同等の優れた耐震性能を有することが明らかとなって いる²。しかしながら, せん断破壊型の試験体を用いた 実験は十分に行われておらず, 文献 3) に示された H 形 鋼を内蔵した CES 試験体3体のみである。特に交差型 H 形鋼を内蔵した CES 試験体では, せん断破壊型の試験 体は全くないことから, 終局せん断強度式と実験値との 整合性は明らかとされていないのが現状である。

そこで本研究では、CES 構造の設計法を確立するため、 CES 部材のせん断耐力評価法を検討する基礎資料を得る ことを目的とし、せん断破壊が先行するように設計した CES 部材の曲げせん断実験を行い、破壊形状、耐力性能 およびせん断特性について把握するとともにせん断耐力 評価法についての検討を行った。

2. 実験計画

(1) 試験体

試験体の一覧を表-1 に、試験体形状を図-2 に示す。試 験体は、内蔵鉄骨にH-194×150×6×9のH形鋼を用い たもの(以下、SH シリーズ)と、2-H-200×100×5.5 ×8 の交差型 H 形鋼を用いたもの(以下、DH シリーズ) の2 シリーズとした。実験変数は、それぞれのシリーズ において、FRC 部分の断面せい(D)を一定として、断 面幅(b)を変数とした b×D = 200×300 mm、300×300 mm、400×300 mmの3体、計6体の試験体を用いた。

30-1

表-1 🚦	式験体-	一覧
-------	------	----

試験体	内蔵鉄骨	繊維補強コンクリート(Fc27)		
SH-200	シングル H	b*D=200mm*300mm		
SH-300	H-194*150*6*9	b*D=300mm*300mm		
SH-400	(SS400)	b*D=400mm*300mm		
DH-200	ダブル Η	b*D=200mm*300mm		
DH-300	2-H-200*100*5.5*8	b*D=300mm*300mm		
DH-400	(SS400)	b*D=400mm*300mm		
繊維・ビニロンファイバー(PE4000) 休巷沢入 率1%				

繊維:ビニロンファイバー(RF4000),体積混入率:

(2) 使用材料

鋼材の材料試験結果を表-2 に示す。内蔵鉄骨には SS 400 材を使用し、材料試験は5 号試験片を用いて行な った。FRC の材料試験結果を表-3 に示す。コンクリート の設計基準強度は Fc = 27 N/mm² とした。FRC に使用し た繊維は、直径 0.66 mm, 長さ 30 mm のビニロンファイ バー(RF4000) であり、体積混入率を 1.0% とした。

(3) 試験方法

加力装置は、日本大学生産工学部の 5000 kN 構造物試 験機を用いて行った。加力方法および変位計位置を図-3 に実験状況を図4に示す。加力は、中央部を試験区間と した逆対称加力(大野式加力)方式とし、一方向単調載 荷とした。

計測は,部材中央の曲げ変形ならびにせん断変形を変 位計により測定した。また,内蔵鉄骨フランジおよびウ ェブのひずみをひずみゲージにより測定した。

3. 試験結果および考察

(1) 破壊形状および実験結果

各試験体の最終破壊形状を図-5 に示す。各試験体とも、 はじめに加力点および支点付近断面の引張側に縦方向に 曲げひび割れが生じ、その後、曲げひび割れが生じた加 力点と支点の圧縮側を繋ぐよう、斜め方向にせん断ひび 割れが発生した。図-5 からわかるように、断面幅が細い

表-2 鋼材の材料試験結果

	板厚		降伏強度 引張強度		破断伸び
	t (mm)	$\sigma_y(N/mm^2)$	$\sigma_t(N/mm^2)$	$E_s(N/mm^2)$	ε (%)
SHウェブ	6.22	332	467		27.8
SHフランジ	9.19	315	462	205000	26.3
DHウェブ	5.02	345	458	205000	32.8
DHフランジ	7.53	326	462		40.3

表-3 FRCの材料試験結果

$\overline{\ }$	設計基準強度 F _c (N/mm²)	材齢	圧縮強度 σ _B (N/mm²)	ヤング係数 E _c (N/mm ²)	曲げ強度 σ _b (N/mm²)	引張り強度 σ _t (N/mm²)
SH	27	36日	31.9	29985		2.8
DH	27	58日	31.7	27448	5.1	2.7

図-4 実験状況

試験体 SH-200, DH-200 では、せん断ひび割れの角度 が小さく、断面上下に主要な2本のひび割れが発生して いる。それに対し、断面幅が300 mm,400 mmの試験体 では、初期に発生した主要な1本のせん断ひび割れが伸 展・拡大するのみであり、ひび割れ本数の増加は殆ど認 められなかった。また、各試験体で初期のひび割れが発 生した後も荷重は上昇し、ひび割れの伸展・拡大が確認 されたが、それによる耐力の大幅な低下は見られず、コ ンクリートの大きな剥落も確認されなかった。

(2) 部材のせん断特性

せん断実験結果を表4に示す。また,SHシリーズの せん断力-変形角 (Q-R) 関係を図-6に、DHシリーズ のせん断力-変形角 (Q-R) 関係を図-7 に示す。なお 横軸の変形角 R は、試験体中央部の試験区間の鉛直変 位δを試験区間の長さL(=2D=600mm)で除した値R $=\delta/L$ で示している。内蔵鉄骨の差異に関わらず、断面 幅が大きくなることにより最大せん断耐力は大きくなる ことがわかる。また、断面幅の違いによる特性として、 断面幅が 200 mm・300 mm の試験体では、せん断耐力が 最大に達した後, 部材の変形が進行しても耐力は急激に 落ちることなく保ち続けるのに対し、400 mmの試験体 では,最大耐力に達した後,200 mm ・300 mm の試験体 と同等まで耐力が低下することがわかる。これらのこと から、内蔵鉄骨幅に対して FRC 部の断面幅を拡大する ことにより、最下耐力を増加することは可能であるが、 その一方で変形性能は低下するものといえる。

4. 耐力評価式

CES 部材の終局曲げ耐力は、日本建築学会「鉄骨鉄筋 コンクリート構造計算規準・同解説」⁴(以下,SRC 規 準)の考え方に基づく一般化累加強度耐力式によって評 価できることが、既往の研究⁵によって明らかであるこ とから、本研究でも同様に一般化累加強度式により算定 した。

CES 部材の終局せん断耐力においても曲げ耐力と同様 にSRC規準を基に評価方法を検討した。

(1) CES部材の終局せん断耐力

CES 部材の終局せん断耐力($_{st}Q_{u}$)は、下記のように SRC 規準に基づき、鉄骨部分の終局せん断耐力($_{s}Q_{su}$) とコンクリート部分の終局せん断耐力($_{c}Q_{su}$)を足し 合わせて評価する。

$${}_{sc}Q_{\mu} = {}_{s}Q_{s\mu} + {}_{c}Q_{s\mu} \tag{1}$$

試験体	せん断ひび割れ 発生荷重	せん断降伏荷重	最大荷重	最大せん断力
	_e P _c (kN)	P _y (kN)	P _{max} (kN)	Q _{max} (kN)
SH-200	65	366	828	414
SH-300	112	466	990	495
SH-400	172	597	1198	599
DH-200	101	562	916	458
DH-300	107	622	990	495
DH-400	145	956	1148	574

 $Q_{max} = P_{max}/2$

図-6 せん断力-変形角 (SH)

30 - 3

(2) 鉄骨部分の終局せん断耐力

鉄骨のせん断降伏によって決まるせん断耐力は,SRC 規準に基づき以下による。

$${}_{s}Q_{su} = t_{w} \cdot d_{w} \cdot \sigma_{y} / \sqrt{3}$$
⁽²⁾

ここで、 t_w : 鉄骨ウェブ厚さ、 d_w : 鉄骨ウェブせい、 σ_v : 鉄骨ウェブの降伏応力度

(3) コンクリート部分の終局せん断耐力

SRC 規準において、コンクリート部分の終局せん断耐 力式は、本文に記載された規準式の他、解説に精度の良 いコンクリートのせん断耐力式として、分割アーチ式。 簡略化せん断耐力式⁷が記載されている。ここでは、文 献 7)を参考にSRC 規準のせん断耐力式、RC 終局強度指 針式⁸、分割アーチ式、簡略化せん断耐力式を用いて検 討した。以下に各算定式および文献 3) 9) による CES 部 材に対する提案式を示す。また、断面の定義を図-8 に示 す。

a) SRC規準のせん断耐力式

 ${}_{c}Q_{su1} = 0.5b \cdot D \cdot F_{s} \cdot \alpha \tag{3}$

 ${}_{c}Q_{su2} = b' \cdot D \cdot F_{s} \tag{4}$

$$\alpha = \frac{4}{\frac{M}{\Omega \cdot D} + 1} \quad (5)$$

$$F_{s} = \min(0.15\sigma_{B}, 2.25 + 4.5\sigma_{B}/100)$$
(6)

ここで、 cQ_{sul} :斜張力による終局せん断耐力, cQ_{sul} :付着割裂による終局せん断耐力, α :柱のせん断 スパン比 $M/(Q \cdot D)$ による係数,b':コンクリートの有 効幅(H形鋼強軸:= $b - b_f$, 十字形鉄骨:=b - sD), b_f :フランジ幅,sD:鉄骨せい, F_s :コンクリートのせ ん断強度

SRC 規準のコンクリート部分の耐力は, $_{c}Q_{sd} \geq_{c}Q_{sd}$ の小さい方でせん断耐力が決まる。

b) RC終局強度指針式

$${}_{c}Q_{su} = \tan\theta \cdot b \cdot D \cdot v \cdot \sigma_{B}/2 \tag{7}$$

ここで、 $\tan \theta = \sqrt{(l'/D)^2 + 1 - l'/D}$, l': 柱の内法スパン, v: コンクリートの有効係数でv = 0.7 - $\sigma_B/200$

c) 分割アーチ式

分割アーチ式はせん断付着破壊が、内蔵鉄骨によりせん断力の伝達が妨げられるため生じると考えた式である。 H形鋼強軸の場合(式(8))と十字形鉄骨の場合(式(9))の算定式を以下に示す。

$$c_{c}Q_{su} = \tan\theta \cdot b' D \cdot \nu \sigma_{B} / 2$$

+
$$\tan\theta_{1} (b_{f} - t_{w}) \cdot d_{w} \cdot \nu \sigma_{B} / 2$$

+
$$\tan\theta_{2} \cdot b_{f} \cdot d_{c} \cdot \nu \sigma_{B}$$
(8)

$$cQ_{su} = \tan\theta \cdot b' \cdot D \cdot v\sigma_{B} / 2$$

+ $\tan\theta_{1}(b_{f} - t_{w}) \cdot d_{w} \cdot v\sigma_{B} / 2$
+ $\tan\theta_{2} \cdot b_{f} \cdot d_{c} \cdot v\sigma_{B}$
+ $\tan\theta_{3}(D - t_{w})(sD - b_{f}) \cdot d_{w} \cdot v\sigma_{B} / 2$ (9)

ここで、
$$t_w$$
: 鉄骨ウェブ厚さ、 d_w : 鉄骨ウェブせい、
 $\tan \theta_1 = \sqrt{(l'/d_w)^2 + 1} - l'/d_w$ 、
 $t a \theta_2 = \sqrt{(l'/sd_c)^2 + 1} - l'/sd_c$ 、
 $t a \theta_3 = \sqrt{(2l'/(D-t_w))^2 + 1} - 2l'/(D-t_w)$ 、

 $v: 鉄骨フランジに囲まれるコンクリートは1.0, <math>sd_c: 鉄骨のかぶり厚さ$

d) 簡略化せん断耐力式

$${}_{c}Q_{su} = \tan\theta \cdot b \cdot D \cdot \mu \cdot \sigma_{B}/2$$

$$\mu = (0.5 + b'/b) \leq 1.0$$
(10)

簡略化せん断耐力式は、分割アーチ式を簡略化した式 であり、μはアーチの有効係数である。

式(10)は、RC 終局強度指針式(7)のコンクリートの有 効係数 $v & \epsilon \mu$ に置き換えた式に見えるが、式の導出にあ たって、 $v = 1.0 & \epsilon$ し、アーチの有効係数 $\mu & \epsilon$ 導入した式 である。よって、式(10)は以下のようにも書き換えられ る。

$$c_{c}Q_{su} = \tan\theta(0.5 + b'/b)\cdot b\cdot D\cdot \mu \cdot \sigma_{B}/2$$

= $\tan\theta \cdot 0.5 \cdot b \cdot D \cdot \nu \cdot \sigma_{B}/2$ (11)
+ $\tan\theta \cdot b' \cdot D \cdot \nu \cdot \sigma_{B}/2$

``

1

ここで,式(11)の第2項は,分割アーチ式(8),(9)の 第1項と同じであり,鉄骨幅外側部分のせん断耐力を表 している。一方,式(11)の第1項は,分割アーチ式(8), (9)の第2項以下を簡略化したものであり,鉄骨幅内側

30 - 4

部分のせん断耐力を表している。アーチが鉄骨で分断されても鉄骨が入っていない場合、すなわちアーチが分断されていない場合の 0.5 倍のせん断力は確保されるということで、b' = 0 すなわち鉄骨幅と柱幅が等しい場合となっても $\mu = 0.5$ となるように μ の式を決めている。よって、式(11)の第1項の 0.5 は、 $\tan \theta$ の係数である。なお b' = b の場合、すなわち内蔵鉄骨がない場合は、 $\mu = 1.5$ となり 1.0 を超えるため、 $\mu = 1.0$ として計算することになる。

e) CES部材のせん断耐力提案式

 ${}_{c}Q_{su} = \tan\theta \cdot b \cdot D \cdot \mu \cdot \sigma_{B}/2$ $\tan\theta = \sqrt{(l'/D)^{2} + 1} - l'/D$ (12)

ここで, *b*:部材断面幅, *D*:部材断面せい, *G*_B:コ ンクリート圧縮強度, *l*':部材の内法スパン

提案式として,式(12)は,簡略化せん断耐力式(10)の コンクリート有効幅係数 μ を,既往の CES 部材の実験 結果に基づき,SH シリーズの場合 0.80³,DH シリーズ の場合 0.87⁹として用いた式とした。

各算定式による計算値と実験値を表-5に示す。また、 各算定式による計算値と実験値との比較を図-9に示す。 計算値と実験値の比較により, SRC 規準式, RC 終局強 度指針式、分割アーチ式のせん断強度は、実験結果に対 してせん断耐力を、極めて小さく評価していることがわ かる。また、簡略化式は上記の三式に比べ実験値との対 応が最も良いが、試験体 SH-400 のように計算結果が曲 げ破壊先行となるような破壊モードと一致しない場合が 生じている。これらの理由として、CES 部材では鉄筋に よる負担せん断強度がないこと,鉄骨せいが大きいため コンクリートの有効幅 b' が小さくなること, 被覆コン クリートに FRC を用いているため分割アーチ式のよう な機構とならず、むしろかぶりコンクリートを含めたコ ンクリートが一体で挙動するため、簡略式と比べてもコ ンクリートの有効幅を大きく取れる可能性が考えられる ことなどが挙げられる。提案式では、簡略化式のコンク リート有効幅係数 μ を,既往の CES 部材の実験結果に 基づき, SH シリーズの場合 0.80, DH シリーズの場合 0.87 と低減した式を用いたため、実験結果と良好な対応 を示している。

表-5 計算値および実験値一覧

		SH-200	SH-300	SH-400	DH-200	DH-300	DH-400
ᄽ묘	_s Q _{mu} (kN)		320		250		
<u></u> 承 月	_s Q _{su} (kN)	208			185		
曲げ耐力	_{sc} Q _{mu} (kN)	539	561	580	564	639	707
SRC規準		263	373	483	185	295	405
RC終局型指針	_{sc} Q _{su} (kN)	329	390	450	306	366	426
分割アーチ		275	336	396	242	302	362
簡略化	μ	0.75	1.00		0.50	0.83	1.00
	_{sc} Q _{su} (kN)	375	543	654	296	462	629
提案式	μ	0.80			0.87		
	_{sc} Q _{su} (kN)	387	476	565	378	474	571
実験値	$Q_{max}(kN)$	414	495	599	458	495	574

図-9 各評価式および提案式の実験値との比較

5. まとめ

CES 部材のせん断性状を把握することを目的とし,内 蔵鉄骨および部材幅の異なる試験体を用いた曲げせん断 実験を行い,破壊形状,耐力性能およびせん断特性につ いて把握した。さらに,耐力評価法の検討として,各耐 力評価式において実験値との比較検討を行った。

本研究で得られた知見は以下の通りである。

- 1) 各試験体とも曲げ耐力に達する前にせん断破壊が生じ, CES 部材のせん断耐力評価の基礎資料を得た。
- 2)破壊形状,耐力性能として,各試験体とも加力点およ び支点付近に曲げひび割れが生じた後,斜めにせん断 ひび割れが生じた。また,それによる耐力の大幅な低 下はみられず,コンクリートの大きな剥落も確認され なかった。
- 3) せん断特性において,内蔵鉄骨が H 形鋼,交差型 H 形鋼のどちらの場合においても,その差異に関わらず 断面幅が大きくなることにより,最大せん断耐力は大 きくなる。
- 4) CES 部材の終局せん断耐力は、簡略化せん断耐力式に おけるコンクリートの有効幅係数を既往の研究に基づ き、適切に評価した提案式を用いることによって内蔵 鉄骨および部材幅の差異によらず評価可能である。

謝辞:本研究は,平成 23 – 24 年度文部科学省科学研究 費補助金(研究活動スタート支援,課題番号23860049, 代表者:藤本利昭)の助成を受けたものである。関係各 位に謝意を表す。 参考文献

- 1)日本建築学会構造委員会鋼コンクリート合成構造運営委員会:CES造建物の構造性能評価指針(案)の制定に向けて、2013年度日本建築学会大会(北海道)構造部門(SCCS)パネルディスカッション資料
- 2) 足立智弘, 倉本洋, 川崎清彦: 繊維補強コンクリート を用いた鉄骨コンクリート合成構造柱の構造性能に関 する実験的研究, コンクリート工学年次論文集, 第 24巻, 第2号, pp.271~276, 2002.6
- 3) 松井智哉, 溝淵博己, 藤本利昭, 倉本洋:シアスパン 比が異なる CES 柱の静的載荷実験, コンクリート工 学年次論文集, pp.1165~1170, 2009年7月
- 4) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・ 同解説,2001
- 5) 藤本利昭, 倉本洋, 松井智哉, 小松博: 繊維補強コン クリートの材料特性を考慮した CES 柱の終局耐力に 関する考察, 日本建築学会構造系論文集, 第75巻, 第658号, 2010年12月
- 6) 若林実,南宏一:コンクリート系構造部材のせん断強 度について,京都大学防災研究所年報,第24号B-1, pp.245~277,1981.4
- ナ井希祐,称原良一:SRC部材の塑性理論に基づくせん断設計式の検討,日本建築学会構造系論文集,第 516号,pp.151~158,1992.2
- 8)日本建築学会:鉄筋コンクリート造建物の終局強度型 耐震設計指針・同解説,1990.11
- 9) 藤本利昭, 倉本洋, 松井智哉: 交差 H 型断面鉄骨を 内蔵した CES 柱の構造性能, 第8回複合・合成構造の 活用に関するシンポジウム, 土木学会 / 日本建築学会, Paper No.4, 2009.11

STUDY ON SHEAR BEHAVIOR OF CES MEMBERS

Ryoma ARAMAKI, Rinako ROKUTA and Toshiaki FUJIMOTO

Concrete Encased Steel (CES) structural system consisting of fiber reinforced concrete (FRC) and encased steels is a new composite structural system, and is being conducted continuous and comprehensive studies to make it practical. In this study, the effects of the sectional width on the shear behavior of CES members are experimentally studied. The selected test parameters are sectional width of FRC and steel shapes. This paper discusses how to evaluate the ultimate shear strength of CES members.