(61) 頭付きスタッドのせん断カーずれ関係の 定式化

島 弘¹・渡部 誠二²

¹フェロー会員 高知工科大学教授 工学部社会システム工学科 (〒782-8502 高知県香美市土佐山田町宮ノロ185) E-mail:shima.hiroshi@kochi-tech.ac.jp

²高知工科大学 工学部社会システム工学科 (〒782-8502 高知県香美市土佐山田町宮ノロ185) E-mail:080530h@ugs.kochi-tech.ac.jp

鋼コンクリート複合構造の設計においては、一般にはずれ止めがすべらないという前提で行われている. しかし、より合理的な設計法とするためには、ずれ止めのせん断力-ずれ関係の式が必要となる.そこで、 本研究では、頭付きスタッドのせん断力-ずれ関係を定式化するために、スタッド軸径、コンクリート強 度、スタッド強度、スタッドの高さ/軸径をパラメータとして標準型押抜き試験を行った.せん断力をせ ん断耐力で除し、ずれをスタッド軸径で除すことによって、せん断力-ずれ関係は一つの式で表すことが できることおよびせん断力-ずれ曲線の形は、コンクリート強度、スタッドの高さ/軸径、スタッド強度 によって異なることを明らかにした.これらの影響を考慮したせん断力-ずれ曲線の包絡線を表す式を提 案した.

Key Words : headed stud, load-slip relationship, pushout test, stud diameter, stud strength

1. はじめに

複合構造物の設計においては、一般には平面保持の仮 定を用いるためにずれ止めのせん断ずれがないという前 提の計算方法が用いられている.しかし、現実にはずれ 止めはせん断力で少なからず変形するものである.また、 せん断ずれを許容する設計にすれば、合理的でコスト削 減になると思われる¹⁰.このようなより合理的な設計を 行うためには、終局ずれや残留ずれを含めたずれ止めに 作用するせん断力とずれ量との関係(せん断力-ずれ関 係)を表す式が必要となる.

一方,近年では非線形有限要素解析による設計法の技術が進歩しており,鋼とコンクリート間の接合要素にせん断カーずれ関係を用いて,終局に至るまでのせん断ずれを考慮した設計が可能となる.逆に言えば,非線形有限要素解析を設計レベルで使用するためには,ずれ止めの終局に至るまでのせん断カーずれ関係式が必要となる.

そこで、本研究では、ずれ止めとして多く用いられて いる頭付きスタッドを対象として、スタッド軸径、コン クリート強度、スタッド強度、スタッドの高さ/軸径を パラメータとした実験を行い、せん断カーずれ関係の定 式化を行った.

2. 現状と問題点

(1) せん断耐力

スタッドのせん断耐力に関しては、多くの研究者によって耐力式が提案されている.たとえば、平城ら³は、 過去のデータを回帰分析して、式(1)に示すような耐力 式を提案している.土木学会の複合構造物の性能照査指 針(案)³および鋼・合成構造標準示方書⁴では、式(1)お よび式(2)のうちの小さい方とすることが示されている.

$$V_{su} = 31A_{ss}\sqrt{\frac{h_{ss}}{d_{ss}}}f'_{c} + 10000$$
 (N) (1)

$$V_{su} = A_{ss} f_{su} \qquad (N) \tag{2}$$

ここで、 V_{su} は頭付きスタッドのせん断耐力(N)、 A_{ss} はス タッドの軸部の断面積(mm²)、 d_{ss} はスタッドの軸径 (mm)、 h_{ss} はスタッドの高さ(mm)、 f_{c} はコンクリートの 圧縮強度(N/mm²)、 f_{su} はスタッドの引張強度(N/mm²)で ある.

(2) せん断カーずれ関係

スタッドのせん断力ーずれ関係は、何人かの研究者に

⇒+ #> /+-	計驗休夕	スタッド軸	スタッド高	75 NO	スタッド引	コンクリート	せん圏	所耐力	
武駛14 来早	(-h - f - f')	径	さ		張強度	強度	式(1)	式(2)	式(2)/式(1)
宙夕	$(\psi n f_{su} f_c)$	mm	mm		N/mm ²	N/mm ²	kN	kN	
No.1	19-120-437-20	19	120	6.32	437	19.5	107.5	123.9	1.15
No.2	19-120-437-31	19	120	6.32	437	31.4	133.8	123.9	0.93
No.3	19-120-437-53	19	120	6.32	437	52.5	170.0	123.9	0.73
No.4	19-120-623-18	19	120	6.32	623	18.3	104.5	176.6	1.69
No.5	19-120-623-28	19	120	6.32	623	27.7	126.3	176.6	1.40
No.6	19-120-623-52	19	120	6.32	623	52.3	169.7	176.6	1.04
No.7	19-80-623-29	19	80	4.21	623	28.4	106.1	176.6	1.66
No.8	19-150-623-29	19	150	7.89	623	28.5	141.8	176.6	1.25
No.9	25-150-449-31	25	150	6.00	449	30.9	217.2	220.4	1.01

表-1 実験条件

よって1種類のスタッド軸径について実験が行われており、それぞれの細径のスタッドに関しては、定式化がなされている。例えば、Ollgaard ら⁵は、スタッド軸径が 3/4 インチ(19mm)のもので異なるコンクリート強度の 実験結果から式(3)を提案している.

$$V = V_{\mu} \left(1 - e^{-0.71\delta} \right)^{2/5} \tag{3}$$

ここで、Vはせん断力(N)、 V_u はせん断耐力(N)、 δ はずれ(mm)である.

しかし、これは他のスタッド軸径やスタッド高さには 適用できるとは限らない. たとえば、Chuah ら⁹は、軸 径が 9.5mm のスタッドの実験結果は、Ollgaard らの式の 形を適用すると係数が変わると報告している.

3. 実験

(1) 実験条件

実験の要因は、スタッド軸径(ϕ)、スタッド強度 (f_{st})、コンクリート強度(f_c)、スタッドの高さ/軸 径($h\phi$)とした.試験体の実験条件を表-1に示す.試 験体のせん断耐力の計算には、土木学会の複合構造物の 性能照査指針(案)および鋼・合成構造標準示方書の解説 に示されている式(1)および式(2)を用いた.式(1)および 式(2)の計算値および式(2)の値に対する式(1)の値の比を 表-1に示す.

(2) 試験体

a) 形状と寸法

試験体の形状と寸法は,(社)日本鋼構造協会の頭付き スタッドの押抜き試験方法(案)⁷⁾に準じた.試験体の概 略を図-1に示す.

b) スタッド

軸径,頭部径および頭部厚は,普通強度スタッドおよび高強度スタッドともに,JIS B 1198 に適合するもので

図-1 試験体の概略図

表-2 スタッドの特性

材質		普通	強度	高強度			
軸径	mm	19	25	19			
高さ	mm	120	150	80	120	150	
頭部径	mm	32	40	32 32 32		32	
頭部厚	mm	10	12		10		
引張強度	N/mm ²	437	449	623			
降伏強度	N/mm ²	326	333	500			

ある.スタッドの特性を表-2 に示す.なお,降伏強度は0.2%残留ひずみ時のものである.

c) 試験体の作製

コンクリートの打ち込み方向がせん断力ーずれ曲線に 大きな影響を及ぼすことが明らかにされている⁸.した がって,打ち込み方向はブリージングの影響が最も少な いスタッド上方から軸に平行にコンクリートを打ち込ん だ(赤尾ら⁸のタイプ A,試験方法(案)の「正立」). さらに,スタッド頭部の下面にブリージング水が留まる のを防ぐため,増粘剤を用いてブリージングの少ないコ ンクリートとした.コンクリートの示方配合,スランプ

迎封路库	スランプ	ブリージ	水セメン	細骨材率		単位量(kg/m³)				
成計強度 (N/mm ²)	(cm)	ング率 (%)	ト比 (%)	(%)	水 W	セメント C	細骨材 S	粗骨材 G	減水剤 SP	増粘剤 VA
20	14	0	70	45	171	244	829	1112	0	0.86
30	8	0	73	47	171	234	893	1112	1.87	0.86
50	20	0.17	58	41	171	295	748	1112	5.31	0.86

表-3 コンクリートの配合およびフレッシュコンクリートの試験結果

値およびブリージング試験の結果を表-3に示す.

スタッドを溶着後に、スタッドおよびH形鋼表面をブ ラスト処理した. コンクリート打設前にコンクリートと 接触する H 形鋼フランジ面にグリースなどの剥離剤は 塗付していない.

(4) 載荷

万能試験機のベッドの鋼表面に食品保存用ラップを広 げ、その上のコンクリートブロック接地位置にセメント ペーストを敷き、試験体を設置した.載荷方法は、一方 向(押し込みのみ)の漸増繰返し載荷である.

(5) 測定項目と測定方法

(社)日本鋼構造協会の頭付きスタッドの押抜き試験方法(案)⁷に準じた.スタッド1本に対するせん断力は, 載荷荷重を荷重計で測定し,載荷荷重をスタッド本数

(4本)で除すことによって求めた. ずれ量は, 試験方法(案)に準じて, スタッド位置における H 形鋼とコン クリートブロック表面の相対変位を4カ所で高感度変位 計を用いて測定した. 一部の試験体において, ウエブ裏 表面の縦方向に4カ所, 横方向に2カ所の合計 16カ所 のひずみを測定した.

結果および考察

(1) 破壊モード

せん断力ーずれ曲線の例として, 試験体 No.1 のもの を図-2 に示す. 全ての試験体において, ずれの増加と ともにせん断力が増加後, 最終段階の除荷再載荷時にお いて, せん断力が過去の最大せん断力に至らずにずれが 増加した. 最大せん断力時あたりからコンクリートにひ び割れが発生し, ずれの増加とともにひび割れが進展し た.

スタッドの破断は, 試験体 No.6 のずれ量が約 6mm の 時のみに発生した. この試験体では, スタッドの破断前 に急激にせん断力が低下した. 計算において式(2)で表 されるスタッドの破断耐力が式(1)の耐力を下回る試験 体 No.2 (式(2)/式(1)=0.93) および No.3 (式(2)/式

図-2 試験体 No.1 のせん断力ーずれ関係

表-4 せん断耐力

試験体 悉号	試験体名 (<i>𝖛-ħ −f −f</i> ′)	せん断耐力 (計算値)	せん断耐力 (実験値)	実験値/計 算値	
E C	$(\varphi \cdots j_{su} j_c)$	kN	kN		
No.1	19-120-437-20	107.5	103.9	0.97	
No.2	19-120-437-31	123.9	118.5	0.96	
No.3	19-120-437-53	123.9	139.8	1.13	
No.4	19-120-623-18	104.5	108.8	1.04	
No.5	19-120-623-28	126.3	120.5	0.95	
No.6	19-120-623-52	169.7	143.8	0.85	
No.7	19-80-623-29	106.1	103.0	0.97	
No.8	19-150-623-29	141.8	138.5	0.98	
No.9	25-150-449-31	217.2	188.1	0.87	

(1)=0.73) においてもスタッドの破断は生じなかった.

(2) せん断耐力

せん断耐力の実験値と計算値との比較を表-4 に示す. 試験体 No2 および試験体 No3 の計算値は、スタッドの 引張耐力(式(2))で決まるものである.計算値に対す る実験値の比は 0.85 から 1.13 の範囲で、平均値は 0.97 であり、式(1)と式(2)の比にかかわらず、実験値は計算 値に近い値となっている.ただし、例えば、試験体 No.2 における実験値と計算値との比は 0.96 であったが、 最大せん断力は除荷開始時となっており、除荷をしなか った場合には、試験体によっては最大せん断力が大きく なった可能性も考えられる.また、試験体 No9 はスタ ッド軸径が 25mm であるが、試験体の H 形鋼フランジ 厚は他の試験体と同じ 12mm としたため、スタッド軸径 に対してフランジ厚が相対的に薄いために、実験値が計 算値よりも小さくなった可能性も考えられる.

(3) せん断カーずれ関係

a) 定式化の方針

スタッドの変形挙動は、スタッドおよびコンクリート のそれぞれの特性が相互に影響を及ぼしあうことや鋼板 とコンクリートの摩擦などのために、複雑なものとなる ことが予想される.したがって、せん断力ーずれ関係の 式として、変形メカニズムを考えたものを構築するのも よいが、本研究では、設計や照査に用いることを念頭に おいて、簡便な形の式とすることとする.具体的には、 式(3)で表される Ollgard らの指数関数式の形を用いるこ とを試みる.Ollgard らの式には係数がふたつあるので、 コンクリート強度、スタッド強度、スタッドの高さ/軸 径の影響は、そららの係数の値を変えることによって対 応するのである.すなわち、式(5)の係数 k1 および k2 を 条件によって変えることを考える.

$$V = V_{\mu} (1 - e^{k_1 \delta})^{k_2}$$
(5)

b)スタッド軸径の影響

スタッドの高さ/軸径など他の条件がほぼ同じで,ス タッドの軸径が異なる試験体である No.2 と No.9 のせん 断カーずれ関係の包絡線を図-3 に示す.当然のことな がら,スタッド軸径が大きい方のせん断力が大きくなっ ている.なお,図中の曲線は,後述する提案式を示すも のである.また,軸径が 9.5mm の過去の実験結果⁹と提 案式も示す.

ここで、せん断カーずれ関係を検討するに当たり、 Ollgaard らの考えを参考にし、せん断力 Vをせん断耐力 V_uで除して正規化する. 図-4 は、縦軸をせん断耐力に 対するせん断力の比(VVV_u) としたものである. この図 から、せん断耐力に対するせん断力の比とずれ量の関係 では、ずれ量はスタッド軸径が大きい方が大となること が分かる. これは、スタッドの寸法が大きくなると、応 力やひずみの分布形が同じ時に、スタッドの変形が寸法 比だけ大きくなると考えられ*る*ことと一致する. すなわ ち、ずれ量をスタッド軸径で除して正規化し、せん断力 ーずれ関係を検討するのが良いことが分かる.

せん断力をせん断耐力で、ずれ量をスタッド軸径で正 規化したせん断力ーずれ関係を図-5 に示す.スタッド 軸径が 19mm と 25mm のせん断力ーずれ曲線がほぼ重な っている.このことから、せん断力をせん断耐力で除し、 ずれ量をスタッド軸径で除すことで、せん断力ーずれ関 係はスタッド軸径の違いにかかわらず一つの式で表すこ とができると言える.したがって、以降はずれ量 δ をス タッド軸径 ϕ で除した δ/ϕ でずれ変位を表し、式は式(6) の形とする.

図-4 スタッド軸径が異なる時の V/Vu とずれとの関係

図-5 スタッド軸径が異なる時の V/V_u と δ/ϕ との関係

$$V = V_{\mu} \left(1 - e^{-\alpha \,\delta/\phi}\right)^{\beta} \tag{6}$$

図-5 の線は、式(6)の係数 β として Ollgaard らの提案で ある 0.4 を用い、 α を 12 とした時のものを示している. 実験結果に合う β としては、0.4 よりもやや小さいもの がよい結果となったが、丸い数字とするために Ollgaard らの値を用いた. β を Ollgaard らの値である 0.4 とし、 α を 12 とすることによって、実験結果をほぼ表すことが できている.

c)コンクリート強度の影響

コンクリート強度が異なる時のせん断力ーずれ曲線を

図-6 コンクリート強度が異なる時のせん断力ーずれ曲線 (スタッド強度=437 N/mm²)

図-7 コンクリート強度が異なる時のせん断力ーずれ曲線 (スタッド強度 =623 N/mm²)

図-6 および図-7 に示す. コンクリート強度が大きいほ ど,最大せん断力が大きくなっているが,スタッドの強 度にかかわらず,せん断力が約 60 kN までは,ずれの絶 対値に大きな差はない結果となっている. なお,図中の 曲線は,後述する提案式を示している.

せん断カーずれ曲線の形状に及ぼすコンクリート強度 の影響を見るために、縦軸としてせん断力を最大せん断 力で除したものを図-8 に示す.最大せん断力の半分程 度までの見かけの初期剛性は、コンクリート強度によら ずほぼ同じとなっている.しかし、それ以降は、コンク リート強度によって曲線の形は異なり、強度が大きいほ ど見かけの接線剛性が小さくなる時の *VVu*が大きくな っている.コンクリート強度によって曲線形状が変わる のは、コンクリート強度が大きくなると、終局状態がス タッドの強度で決まる方向となり、あるせん断力から急 激な塑性状態となるためだと思われる.すなわち、曲線 形状は、式(1)と式(2)の比に関係しそうであることが分 かる.

図-8 の一点鎖線,破線および実線は,βを 0.4 とした時に,試験体 No.1, No.2 および No.3 の実験結果に合うように,αをそれぞれ 7.0, 12 および 21 としたものである.前述の図-5 に示される試験体 No.2 および No.9 と同

図-8 コンクリート強度が異なる時の V/V_u と δ/ϕ の関係

図-9 スタッドの高さ/軸径が異なる時のせん断力ーずれ曲線

図-10 スタッド高さ/軸径が異なる時の V/V_u と δ/ϕ の関

様に、試験体 No.1 から No.6 についても、 β を Ollgaard ら の値である 0.4 として、 α を変えることによって実験結 果をほぼ表すことができている. 同様に、試験体 No.4, No.5 および No.6 についても α をそれぞれ 12, 13 および 20 とすることで実験結果を表すことができる.

d) スタッドの高さ/軸径の影響

スタッドの高さ/軸径が異なる試験体 No.5, No.7 お よび No.8 のせん断カーずれ関係を図-9 に示す. 既往の 研究結果にあるように, スタッドの高さ/軸径が大きい ほど, せん断力は大きくなっている. なお, 図中の線は, 後述する提案式を表している.

せん断力ーずれ曲線に及ぼすスタッドの高さ/軸径の 影響を見るために、縦軸としてせん断力を最大せん断力 で除したものを図-10 に示す. スタッドの高さ/軸径の 影響としては、コンクリート強度の影響とは逆に、せん 断耐力の小さいものが見かけの接線剛性が小さくなる VVV,が大きくなっている. これらの試験体は、式(2)/式 (1)の値が 1.25 から 1.66 で、式(2)のスタッドの引張耐力 に余裕があるものであるが、式(2)/式(1)の値が大きい ほど、言い換えれば式(1)と式(2)の差が大きいほど係数 α が大きくなる結果となっている.

図-10 の破線および一点鎖線は、試験体 No.7 および試 験体 No.8 に対して、 β を 0.4 とした時にそれらの実験結 果に合うように、αをそれぞれ 16 と 10 としたものであ る. 前述の試験体 No.1 から No.6 および No.9 と同様に, 試験体 No.7 および No.8 についても, βを Ollgaard らの値 である 0.4 として, αを変えることによって実験結果を

ほぼ表すことができている.

e)定式化

以上のように、各試験体の実験結果において、せん断 力を最大せん断力で除した VVL とずれをスタッド軸径 で除した δ/ϕ との関係に対して, Ollgaard らの式の係数 のフィッティングを試みた結果,係数*B*は条件によって 変えずに Ollgaard らの値である 0.4 を用い, 係数 α だけ を変えることで試験体の曲線を表すことができることが 判明した. 各試験体における実験結果に対するα値の最 適値を実験値として表−5の中央部に示す.なお, Ollgaard らの式を式(6)の形にした場合, α の値は 13.5 と なる.

表-5 から, α 値の実験結果 α_{exp}は、コンクリート強度 が大きいものが大となっていることが分かる. そこで, α_{sm}とコンクリート強度との関係を図-11 に示す. コン クリート強度が同じでも、他の条件によって α_{exp} は異な るが、他の条件による差はコンクリート強度の影響に比 べて小さくなっている.また、上述の実験結果の考察か ら、せん断力-ずれ関係の曲線の形は、式(1)で表され るコンクリート破壊に対して式(2)で表されるスタッド の強度が十分にあれば aep が大きくなること, 逆に式(2) の耐力に対して式(1)の耐力が大きい場合にも acm は大と なることが分かっている. そこで, α 値の式は, 式(7)に 示すように、まずコンクリート強度の関数 α とし、そ の他の条件の影響を表す係数 k を導入する.

$$\alpha = k \alpha_0 \tag{7}$$

コンクリート強度の関数とする anは,式(2)/式(1)の値 が1の時に最も小さくなることから、式(2)/式(1)の値が 1の時の α とする. すなわち, 図-11 の下限を表す式と なる. ここでは、図-11 に線で示すような式(8)を用いる.

表-5 α値の実験値と計算値

試験体	⇒₩₩	実験値	計算値		
番号	武帜半石	$\alpha_{\rm exp}$	$lpha_0$	k	α
No.1	19-120-437-20	7.0	7.5	1.03	7.67
No.2	19-120-437-31	12	12.0	1.01	12.1
No.3	19-120-437-53	21	20.1	1.08	21.8
No.4	19-120-623-18	12	7.0	1.52	10.7
No.5	19-120-623-28	13	10.6	1.18	12.5
No.6	19-120-623-52	20	20.0	1.00	20.1
No.7	19-80-623-29	16	10.9	1.49	16.2
No.8	19-150-623-29	10	10.9	1.07	11.6
No.9	25-150-449-31	12	11.8	1.00	11.8

図-11 α_m および α_0 とコンクリート強度との関係

$$\alpha_0 = 11.5 \frac{f_c}{f_{c0}}$$
(8)

ここで、 f_c' はコンクリート圧縮強度(N/mm²) f_{c0} / $t^{2} 30 \text{ N/mm}^{2}$

である.

式(2)/式(1)の値を耐力比 γ と定義し、横軸に耐力比 γ および縦軸に α の実験値 αeg を式(8)の値で除した係数 k を取ったものを図-12に示す. 試験体 No.1を除き, 耐力 比の1を中心として、耐力比が大きくおよび小さくなる

ほど係数 kの値は大きくなっている.

係数 kの定式化に関しては、座標(1,1)を原点とした 2 直線で近似することも考えられるが、耐力比 y の値が 1 の近傍において係数 kの変化率が不連続にならないよう にすることおよびひとつの式で表すことを考慮して、こ こでは座標(1,1)を頂点とする n 次関数を用いることと する.実験結果に合う関数のひとつとして、ここでは、 図-12 に線で示すような式(9)で表される二次関数を用い ることとする.

$$k = 1.1 (\gamma - 1)^{2} + 1 \tag{9}$$

ここで、γは耐力比で、式(2)/式(1)の値である.

式(7)~(9)による係数 a₀, kおよび a の計算値を表-5 の 右部分に示す.また,係数 a の実験値と計算値の比較を 図-13 に示す.両者から計算値は実験値とほぼ一致して いることが分かる.

各試験体におけるせん断力ーずれ曲線の実験結果と提 案式との比較を No.1 に関しては図-6, No.2 に関しては 図-3 および図-6, No.3 に関しては図-6, No.4 に関して は図-7, No.5 に関しては図-7 および図-9, No.6 に関し ては図-7, No.7 および No.8 に関しては図-9, No.9 に関 しては図-3 に示す.また,今回の実験においては,ス タッドの軸径を 19mm と 25mm としたが,より細径のス タッドへの適合性を見るために,軸径が 9.5mm のスタ ッドを用いた Chuah らの実験⁶の普通コンクリート(試 験体 No.7)のものの実験結果と提案式との比較を図-3 に示す. Chuah らの試験体 No.7 に提案式を用いると, *a* 値は 17.4 となる.それぞれ,式は実験結果を表すこと ができていると思われる.

前にも述べたが、Ollgaard らの式における α 値は条件 の違いにかかわらず 13.5 の一定値であり、適用範囲が 限られている.今回の結果は、スタッド軸径の違いを考 慮することができ、さらに、コンクリート強度、スタッ ドの高さ/軸径、スタッド強度の違いによる影響をα値 として約7~20の範囲で表すことができており、Ollgaard らの式よりも適用範囲が広く、精度の良い式が提示でき たと考えている.

g) 終局ずれ

限界状態設計法あるいは非線形有限要素解析において, スタッドがどこまで変形できるかを決定する終局ずれ量 は極めて重要な指標である.本実験における終局ずれ量 を図-14 に示す.縦軸は終局ずれをスタッド軸径で除し たもので,横軸は耐力比(式(2)/式(1))で表した.ここ での終局ずれの定義は,提案するせん断力ーずれ関係が 適用できる最大のずれ量であり,せん断力が最大となっ たずれ量である.横軸を耐力比で表したのは,スタッド の引張耐力が大きくなるほど終局ずれ量が大きくなるの

図-13 係数αの実験値と計算値の比較

表-6 ウエブ圧縮力/スタッド断面積の値

試験体	試験体名	最大値	最大せん 断力時	
		N/mm ²	N/mm ²	
No.1	19-120-437-20	74.8	74.8	
No.2	19-120-437-31	83.9	62.6	
No.3	19-120-437-53	104	74.7	
No.4	19-120-623-18	83.0	71.5	
No.6	19-120-623-52	70.1	67.0	
No.9	25-150-449-31	124	121	

ではないかと考えたからである.しかし,終局ずれ/ス タッド軸径の値は,耐力比にかかわらず 0.3 から 0.4 の 範囲となっている.

h) 適用範囲

スタッドの耐力は、鋼とコンクリートの接合面に対して 直角方向の作用力によって異なることが知られている. せん断力ーずれ関係も同様であると思われ、式の適用に あたっては、実験における直応力の条件を明確にしてお く必要がある.

本研究で行った押抜き試験の方法では、コンクリート ブロック底面と試験機との摩擦によって、コンクリート ブロックが拘束され、ウエブに圧縮力が作用する.本研 究においては、ウエブの圧縮力を測定するために、添接 板を用いずにウエブを溶接し、3 体を除く試験体で、ウ エブのひずみ分布を左右の上下方向4カ所の裏表面で測 定した.そのひずみ分布にヤング係数を乗じたものを積 分してウエブの圧縮力とし、それをスタッドの総断面積 で除したものを表-6に示しておく.

5. 結論

本研究の実験結果から以下の結論を得た.

(1) せん断カーずれ関係に及ぼすスタッド軸径の影響に ついては、せん断力をせん断耐力で除し、ずれをスタッ ド軸径で除すことで、せん断カーずれ関係はスタッド軸 径の違いにかかわらず一つの式で表すことができる.

(2) せん断カーずれ関係をせん断力/最大せん断力 (*VVu*) とずれ/スタッド軸径 (δ/φ) との関係として表 すとき,曲線の形はコンクリート強度によって異なり, 強度が大きいほど剛性が低下し始める時の *VVVu*が大き い.

(3) スタッドの高さ/軸径の影響としては、せん断耐力の小さいものが剛性が低下し始める時の V/V_uが大きい.
(4) スタッドの強度の影響に関しては、スタッドの強度が小さい方が剛性が小さい.

(5) 以上の各要因の影響を表すことができるせん断カー ずれ関係の包絡線式として,

 $V = V_u (1 - e^{-\alpha \,\delta/\phi})^{2/5}$ $\alpha = 11.5 \left\{ 1.1 (\gamma - 1)^2 + 1 \right\} f_c' / f_{c0}'$

を提案した.

(6) 終局ずれは、スタッド軸径の 0.3 から 0.4 倍程度であった.

謝辞:本研究の動機は、土木学会複合構造委員会の指針 改訂小委員会での議論によるものです.スタッドの溶着 および普通スタッドの手配は川田工業(株)四国工場に して頂き、高強度スタッドはピーシー橋梁(株)にご提 供頂きました.実験の実施にあたっては、COE職員の宮 地日出夫氏ならびにコンクリート研究室の皆様に協力頂 きました.関係者の皆様に謝意を表します.

参考文献

- 中島章典,池川真也,山田俊行,阿部英彦: ずれ止めの非 線形挙動を考慮した不完全合成桁の弾塑性解析,土木学会 論文集, No.537/I-35, pp.97-106, 1996.4
- 平城弘一,松井繁之,福本琇士:頭付きスタッドの強度評価式の誘導一静的強度評価式一,構造工学論文集,Vol.35A, pp.1221-1232,1989.3
- 4) 鋼·合成構造標準示方書 [設計編], 土木学会, p.258, 2007.
- Ollgaard, J., Roger, R. and Fisher, J.: Shear strength of stud connectors in lightweight and normal-weight concrete, *AISC Engineering Journal*, pp.55-64, April 1971.
- 6) Chuah, C., Shima, H., Noritake, K. and Kumagai, S.: Strength and deformational behaviors of studs embedded in high strength prestressed concrete, コンクリート工学年次論文報告集, Vol.13, No.2, pp.1033-1038, 1991.
- 7) 頭付スタッドの押抜き試験方法(案), JSSC テクニカルレポート, No.35,(社)日本鋼構造協会, pp.1-24, 1996.11
- 8) 赤尾新助,栗田章光,平城弘一:頭付きスタッドの押抜き 挙動に及ぼすコンクリートの打込み方向の影響,土木学会 論文集,第380号/1-7,pp.311-320,1987.4

FORMULATION FOR LOAD-SLIP RELATIONSHIPS OF HEADED STUD CONNECTOR

Hiroshi SHIMA and Seiji WATANABE

Formulation for load-slip relationship of shear connector is necessary to rational design of composite structures. Pushout tests of headed stud connector were carried out under various stud diameter, stud strength, stud height/diameter ratio and concrete strength. Load-slip relationship can be represented by one equation with dividing shear force by shear strength and slip by stud diameter. The form of load-slip relationship depends on concrete strength, stud height/diameter ratio and stud strength. Equations for the enveloped curve of load-slip relationship taking account of these effects was proposed.