(23)高力ボルト接合を用いた鉄骨鉄筋 コンクリート柱・鉄骨梁接合部の構造性能

久保田 淳1・福元 敏之2・福田 孝晴3

 ¹会員 鹿島建設株式会社 技術研究所(〒182-0036東京都調布市飛田給2-19-1) E-mail:jkubota@kajima.com
 ²会員 鹿島建設株式会社 技術研究所(〒182-0036東京都調布市飛田給2-19-1) E-mail:fukumoto-to@kajima.com
 ³会員 鹿島建設株式会社 建築設計本部(〒107-8502東京都港区赤坂6-5-30) E-mail:fukudath@kajima.com

本研究では,SRC柱と鉄骨梁の混合構造において,SRC柱内の鉄骨断面を小さくし,鉄骨加工量低減の ために,柱鉄骨と梁鉄骨をボルト接合するディテールを考えた.しかし,梁鉄骨の曲げ耐力に対する柱鉄 骨の曲げ耐力比が0.4以下の場合,柱梁接合部の応力伝達について詳細な検討が必要とされている¹⁾.そこ で,小鉄骨を用いたSRC柱と鉄骨梁の接合に,ボルト接合を用いた柱梁接合部の構造性能把握及び既往耐 力評価式の適用可能性の検証を目的に部分骨組実験を実施した.実験の結果,大変形まで大きな耐力低下 の無い安定した履歴性状を示すこと,最大耐力実験値は,既往耐力評価式による終局耐力計算値を上回る ことが分かった.

Key Words : steel reinforced concrete column, steel beam, beam-column connection, *T*-stub connection, end plate connection, subassemblage test

1. はじめに

高軸耐力,高靱性が期待できる鉄骨鉄筋コンクリート 柱(以下, SRC柱)と, 軽量化, 大スパン化が可能な鉄 骨梁を組み合わせたSRC柱鉄骨梁架構は,事務所ビルや 商業施設などの多くの建物に適用されている.本研究で は,このSRC柱鉄骨梁架構において,生産性の向上及び短ボル 経済性の追及を目的に,鉄骨柱梁接合部にボルト接合を 用い, SRC柱内の鉄骨断面の縮小化を図った構法(図-1 参照)を考案した.本構法の柱梁鉄骨の接合方法は,梁 鉄骨を柱鉄骨にスプリットティ接合するタイプ(以下, 梁STタイプ)と, 柱鉄骨を梁鉄骨にエンドプレート接 合するタイプ(以下,柱EPタイプ)に分けられる.い ずれの接合方法においても,既往研究における実験資料 は僅少である.また,日本建築学会「鉄骨鉄筋コンクリ ート構造計算規準・同解説」¹⁾(以下, SRC規準)では, 梁鉄骨の曲げ耐力に対する柱鉄骨の曲げ耐力比が0.4以 下の場合, 柱梁接合部の応力伝達について詳細な検討が 必要とされている.本接合部で検討すべき構造性状とし て, 柱梁接合部のせん断性状, 柱梁接合部の応力伝達に おける局部支圧性状及びボルト接合部の引張性状が挙げ られる.また,梁STタイプでは,梁鉄骨ウェブと柱鉄 骨ウェブが連続していないことによる接合部パネルのせ

ん断耐力への影響が,柱EPタイプでは,梁鉄骨上下の 支圧コンクリート部分に配置されるエンドプレートの局

試験体名称		ST1	ST2	ST3	ST4	ST5	ST6	EP1	EP2	EP3			
柱梁鉄骨接合部タイプ				梁	ST				EP1 EP2 EP 柱EP 強軸 短ボルトのみ 有り 痛し 無し 無し 有部支圧破壊 500×500 Fc40 12-D16(SD345) [0.96%]				
柱鉄帽	骨配置方向	強	軸		弱軸		強軸	強軸					
柱梁鉄骨接合形式		長ボルト	+短ボルト		短ボルトのみ		短ボルト +スチフナ	短ボルトのみ					
	支圧板	有	гb		無し		有り	有り					
按合部	バンドプレート	無し	有り	無	L	有り	有り						
竹田切虫	延長支圧板		•	無	有り								
想定	破壊形式			接合部せ	ん断破壊			局部支圧破壊					
柱断面及びFc				400×40	500×500 Fc40								
柱主筋 [Pt]				4-D25(SD3	12-D16(SD345) [0.96%]								
柱横裤	甫強筋 [Pw]		4	2-D10@75(SD	2-D6@50(SD295A) [0.25%]								
柱鉄骨断面 ^{※1}		$\substack{ \text{H-175}\times 175 \\ \times 4.5\times 9 }$	H-175 ×6	5×175 5×9	$\substack{\text{H-200}\times175\\\times6\times6}$	$\substack{\text{H-200}\times175\\\times6\times12}$	$\substack{\text{H-175}\times175\\\times6\times9}$	$H-245 \times 150 \times 6 \times 6$	$\overset{\text{H-150}\times100}{\times6\times6}$	$\substack{\text{H-}245\times150\\\times6\times6}$			
梁断面*1		$\substack{\text{H-375}\times100\\\times6\times22}$	$\substack{\text{H-375}\times100\\\times6\times25}$	$\substack{\text{H-375}\times100\\\times12\times22}$	H-375 ×6	$5 \times 150 \times 22$	$\substack{\text{H-375}\times100\\\times6\times25}$	$\substack{\text{H-600}\times150\\\times9\times19}$	$\overset{\text{H-450}\times100}{\times9\times22}$	$\substack{\text{H-600}\times150\\\times9\times19}$			
柱梁鉄帽	骨曲げ耐力比	0.34	0.29	0.11	0.06	0.11	0.29	0.15	0.10	0.15			
接合部構	黄補強筋 [Pw]		4	2-D6@	75(SD295A)	[0.17%]							
STま (高さ×頼	たはEP ^{※1} 冨×板厚(mm))	125×	×175 25		172×130 ×19		$125 \times 175 \\ \times 25$	335×150 ×19	$\begin{array}{c} 250 \times 100 \\ \times 19 \end{array}$	335×150 ×19			
ボルト ^{**2}		短ボルト 長ボルト	:4-M12 :4-φ11		4-M12		8-M12	16-M12	8-M12	16-M12			

表-1 試験体一覧

部支圧耐力への影響が懸念される.そこで,本研究では, 梁STタイプの柱梁接合部のせん断性状及び柱EPタイプ の柱梁接合部の応力伝達における局部支圧性状を把握す るために,部分骨組実験を実施した.さらに,実験結果 と既往の耐力評価式による諸耐力の比較より,評価式の 適用可能性について検討を行った.本報では,実験概要 及び結果,諸耐力の比較検討結果について報告する.

2. 実験概要

試験体一覧を表-1に,試験体形状を図-2,図-3に示す. 梁STタイプ試験体(図-2)の実験因子は, 柱鉄骨の 配置方向(強軸方向及び弱軸方向), 柱鉄骨と梁鉄骨 の接合形式(柱鉄骨フランジ間を繋ぐ長ボルトと短ボル ト併用,短ボルトのみでスチフナを設置), バンドプ レートの有無である.梁STタイプ試験体はいずれも, 接合部パネルのせん断耐力(5章(1))が各部の耐力を下 回るように設計した.一方,柱EPタイプ(図-3)の実験 因子は, 柱及び梁鉄骨断面サイズ, 延長支圧板の有 無である.柱EPタイプ試験体は,いずれも接合部の局 部支圧耐力(5章(2))が各部の耐力を下回るように設計 した.

試験体は,部分骨組十字形試験体であり,梁STタイ プ6体,柱EPタイプ3体の計9体である.試験体の柱梁鉄 骨曲げ耐力比は,0.06~0.37と0.4以下に設定した.支圧 板,延長支圧板及びバンドプレートとは,接合部耐力の 向上を目的に,鉄骨梁せい内または鉄骨梁上下に配置し た補強板及び補強金物である.支圧板及び延長支圧板の 幅は,梁フランジ幅と同じとし,延長支圧板は,幅中央 位置に補強リブを設けた.短ボルト(FIOT)の締め付 けは,標準ボルト張力を導入して行った.一方,長ボル

(a) 試験体形状

(b) 接合部詳細

トはPC鋼棒を使用し,断面の軸耐力比NN_µ=0.05 (N_µ=A•_µ, A: PC鋼棒の断面積,_µ, S: PC鋼棒の降 伏点)の初期軸力を導入した.試験体に用いた鋼材及び コンクリートの機械的性質を表-2,表-3に示す.

3. 実験方法

加力は,柱頭・柱脚を単純支持し,柱に軸耐力比N/ N₀=0.3(梁STタイプ),0.25(柱EPタイプ)(N₀=B_c・ D_c・_{c B},B_c:柱幅,D_c:柱せN,_{c B}:コンクリート 圧縮強度)の一定軸力を与え,梁端に正負逆対称の荷重 を繰返し作用させた.載荷履歴は,層間変形角R=2.5,5, 10(2回),20,40×10³radを繰返した後,80×10³radま で載荷した.

4. 実験結果

実験結果一覧を表-4に,40×10⁻³radまでの荷重-変形関

表-2 鋼材の機械的性質

(a) 梁STタイプ

		(1) 未5	51/1/									
サイズ		庙田郊位	綱秳	降伏点	引張強さ	伸び						
912	\sim	使用即位	到門作里	(N/mm^2)	(N/mm^2)	(%)						
PL-4	.5	柱ウェブ		345	575	34						
PL-6	1	柱梁ウェブ,柱フランジ FBP		396	566	35						
IL U	2	柱ウェブ(ST5のみ)		343	576	37						
PL-9	1	柱フランジ バンドプレート		402	569	34						
11.5	2	柱フランジ(ST1のみ)	SM490	390	534	33						
PL-12	1	梁ウェブ, スチフナ		352	506	36						
	2	柱フランジ		385	542	34						
DI 10	1	STフランジ(ST4)		362	529	37						
PL-19	2	STフランジ(ST3, 5)		394	551	39						
PL-22		梁フランジ		366	531	38						
PL-25	1	梁フランジ(ST2, 6) STフランジ(ST6)		416	547	39						
	2	STフランジ(ST1, 2)		383	531	40						
D10)	横補強筋	SD295A	370	496	21						
D25	5	主筋	SD345	378	560	25						
φ1	1	長ボルト	SBPR 930/1080	1038	1261	8						
M12		短ボルト	F10T	1030	1075	18						
	(b) 柱EPタイプ											

サイズ	使用部位	鋼種	降伏点	引張強さ	伸び
		単う	(N/mm^2)	(N/mm^2)	(%)
PL-6	柱鉄骨,リブ,支圧板		409	568	31
PL-9	梁ウェブ,支圧板	C) (400	359	536	25
PL-19	EPL, 梁フランジ	51490	348	531	28
PL-22	梁フランジ		356	530	28
D6	横補強筋	SD295A	422	519	14
D16	主筋	SD345	379	563	17

※試験片はPL-6がJIS Z 2201 5号、PL-9,19,22が1A号試験片。

鉄筋は2号試験片。

※鋼板・鉄筋ともに降伏点は0.2%オフセット法による。

表-3 コンクリートの機械的性質

(a) 梁STタイプ												
試験体	ST1	ST2	ST5	ST6								
圧縮強度(N/mm ²)	38.3	39.7	38.3	37.2	40.4	41.0						
(b) 柱EPタイプ												
試験体	El	P1	El	P2	EP3							
口 编改 庄 (N1/2)	38	2 7	37	' Q	37.4							

係を図-4に,荷重-変形関係包絡線の比較を図-5に,最 終破壊状況を写真-1に示す.

(1) 梁STタイプ

実験経過(写真-1)について,いずれの試験体も3× 10³radまでに 梁フランジ端からの放射状ひび割れが生 じた.続いて2~4×10³radで,柱の曲げひび割れ及び接 合部パネルのせん断ひび割れが生じ,10~20×10³radで 圧縮側梁フランジ上下のコンクリートの圧壊ひび割れが 生じた.最終的には,いずれの試験体もせん断ひび割れ が顕著となっており,想定どおり,接合部パネルのせん 断破壊により終局に至った.

表-4 実験結果一覧

			S	T1	S	T2	S	Т3	S	T4	S	Τ5	ST6		EP1		E	P2	E	P3
		Qb	R	Qb	R	Qb	R	Qb	R	Qb	R	Qb	R	Qb	R	Qb	R	Qb	R	
		[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	[kN]	[rad.]	
実験値	ひび 割れ ¹⁾	 ①梁端部 放射状 	61	0.002	70	0.002	50	0.002	41	0.001	82	0.003	78	0.003	49	0.002	34	0.002	60	0.002
		②柱曲げ	90	0.003	91	0.003	75	0.003	73	0.003	82	0.003	78	0.003	106	0.004	90	0.006	78	0.003
		③接合部せん断	110	0.004	78	0.003	50	0.002	73	0.003	80	0.002	78	0.003	153	0.006	105	0.008	122	0.004
		④フランジ上下圧壊	197	0.015	211	0.018	182	0.016	175	0.020	-180	-0.010	212	0.016	188	0.010	117	0.010	188	0.010
	最大	正加力	199	0.020	217	0.040	191	0.020	175	0.020	231	0.020	217	0.040	211	0.020	136	0.020	220	0.020
	耐力	負加力	185	0.020	205	0.040	181	0.020	171	0.020	216	0.020	207	0.040	187	0.020	129	0.020	213	0.020
	破壊性状			接合部せん断破壊								局部支圧破壊								
計算値	終局耐力2)		14	146 159		1	114		17	116		164		187		118		182		
	実験値 正加力		1.	36	1.36		1.68		1.50		1.99		1.32		1.13		1.15		1.21	
	計算值	負加力	1.	27	1.	29	1.	59	1.	46	1.	.86	1.	26	1.	00	1.	10	1.	17

※Qb[kN]及びR[rad]は、各々梁端における荷重,層間変形角である 1) ひび割れ名称については写直-1を参照 放射状ひび割れ 梁上下コン圧壊 2) 梁STタイプは接合部せん断耐力, 柱EPタイプは局部支圧耐力を示す 柱曲げひび割れ 最大耐力 接合部パネルせん断ひび割れ 240 240 240 接合部パネル 接合部パネル 180 180 180 接合部パネル せん新耐力 せん新耐力 120 60 -60 -60 (NA)dD(大) 60 0 (NA)dD(K) 60 0 せん断耐力 く-60 断 へ開 -60 ¥ 120 ¹120 [⊉]120 -180 -180 -180 ST2 ST5 ST6 -240 -240 -240 -40 -30 -40 -30 -40 -30 -20 -10 0 10 20 30 40 -20 -10 0 10 20 30 40 -20 -10 0 10 20 30 層間変形角(×10⁻³rad) 層間変形角(×10⁻³rad) 層間変形角(×10⁻³rad) (a) 梁 ST タイプ 240 240 240 局部支圧耐力 局部支圧耐力 180 180 180 120 60 0-60 0-60 (NA)dD(KN) 60 0 局部支圧耐力 断 -60 ¥ 120 [⊉]120 ¹120 -180-180-180EP1 EP2 EP3 -240 -240 -240 -40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -100 10 20 30 40 -40 -30 -20 -10 0 10 20 30 層間変形角(×10⁻³rad) 層間変形角(×10⁻³rad.) 層間変形角(×10⁻³rad) (b) 柱 EP タイプ 図-4 荷重 - 変形関係

履歴性状(図-4(a))は,層間変形角10×10³radまで紡 錘形を示し,梁フランジ上下に生じる隙間の拡大に伴い, 若干スリップ型となったが,層間変形角40×10³radの大 変形まで急激な耐力低下が無く,安定した挙動を示した. 柱梁鉄骨の接合形式の違い(ST2とST6)による履歴性 状の差異は見られなかった.また,バンドプレートによ り最大耐力は, 柱強軸方向の場合(ST1とST2)で1.09倍, 柱弱軸方向の場合 (ST4とST5) で1.32倍に上昇し, 最大 耐力後の耐力低下を抑え,変形性能も向上した(図-5 左).これは,バンドプレートによる梁フランジ上下支 圧部コンクリートの拘束効果の影響と考えられる. (2) 柱EPタイプ

実験経過(写真-1)について,2×10⁻³radまでに 梁フ ランジ端からの放射状ひび割れ,3~6×10³radで 柱の

曲げひび割れ,4~8×10³radで 接合部せん断ひび割れ が見られた.そして,いずれの試験体も,10×10³radで 生じた 圧縮側梁フランジ上下のコンクリート圧壊が進 展するとともに,圧縮側の放射状ひび割れが拡大する局 部支圧破壊により最大耐力に至った.

40

40

いずれの試験体も,梁STタイプと同様で,大変形ま で大きな耐力低下の無い安定した履歴性状を示した (図-4(b)). 柱梁鉄骨断面サイズの違いによる比較 (EP1とEP2)より, 柱梁フランジ幅の大きいEP1はEP2 に比べて,最大耐力が1.5倍と大きく,局部支圧耐力に 及ぼす柱梁フランジ幅の影響が確認できた.また,延長 支圧板有無の比較(EP1とEP3)より,延長支圧板のあ るEP3の最大耐力は,支圧板のないEP1の1.09倍となって おり,最大耐力後の荷重低下が緩やかである(図-5右).

5. 耐力評価

本章では,梁STタイプにおける柱梁接合部のパネル 終局せん断耐力及び柱EPタイプにおける局部支圧耐力 について,実験結果と既往の耐力評価式による諸耐力の 比較検討を行った.最大耐力実験値及び終局耐力計算値 の比較を表-4に示す.

(1) 接合部パネルせん断耐力

SRC 規準式¹⁾ ((1)式)による接合部パネルせん断耐力 (Q_u)と接合部パネルのせん断破壊で終局に至った梁 ST タイプの実験結果の比較検討を行った.

応力度, , , ,:鉄骨の降伏応力度

本研究における梁 ST タイプ試験体及び既往の実験資料²⁾の最大耐力実験値と終局耐力計算値の比較を図-6に示す.本研究における実験値/計算値は 1.26~1.86(負載荷時,平均値 1.46)となり,実験値は計算値を上回っている.特に,柱弱軸方向試験体の実験値/計算値の比率が大きい.これは,計算値がコンクリートと横補強筋のみの耐力であるのに対し,柱鉄骨フランジ部分が最大耐力に寄与しているためと考えられる.

(2) 局部支圧耐力

梁から柱への応力伝達における耐力を,柱鉄骨部分の曲げ耐力(M_q)と,梁フランジ上部コンクリートの支 圧抵抗機構による耐力(M_x)の累加とし,局部支圧耐力 (M_x)と呼ぶ²⁾.コンクリート支圧抵抗機構による伝達モ ーメント(M_x)は,図-7に示す支圧応力ブロックで評 価する.この支圧応力ブロックの評価は,「鉄筋コン クリート柱・鉄骨梁混合構造の設計と施工」³に基づい

(a)ST4 試験体 (b)EP1 試験体 写真-1 試験体の最終状況

図-7 支圧耐力式の基本となる力学モデル

ているが,柱鉄骨の影響は考慮されていない.コンク リート支圧抵抗機構による伝達モーメント(M_c)は, 支圧ブロック幅を梁フランジ幅の1.1倍,支圧ブロック の奥行きを柱鉄骨のコンクリート被り厚,コンクリー ト支圧終局強度を圧縮強度の2倍として(2)式となる. さらに、(3)式により,鉄骨部分の耐力を累加すること で局部支圧耐力を導く.

$$M_{rc} = C_n \cdot (D_c \cdot c) \quad \dots \quad (2)$$

$$C_n = f_m \cdot B_e \cdot c$$

$$c = (D_c \cdot D_s)/2$$

$$f_m = 2 \cdot c \quad B \quad B_e = 1.1 \cdot B_f$$

$$M_c = M_{rc} + 2 \cdot {}_s M_{cp} \quad \dots \quad (3)$$

 M_{rc} :支圧抵抗機構による伝達モーメント, B_{f} :鉄 骨梁の梁幅, C_{n} :支圧終局耐力, D_{c} : SRC 柱せい, D_{s} :柱鉄骨のせい, f_{m} , B_{s} , c:支圧応力ブロックの支 圧終局強度,幅,奥行き, C_{B} :コンクリートの圧縮 強度, M_{m} : 柱鉄骨の曲げ耐力

局部支圧破壊を起した柱 EP 試験体及び既往の実験資料³⁾の最大耐力実験値と終局耐力計算値との比較を図-8 に示す.本研究における実験値/計算値は1.00~1.17 (負載荷時,平均値1.09)であり,良い対応を示した. このうち,延長支圧板のある試験体(EP3)の実験値/ 計算値は1.17であり,EP1の同比率より大きい.これは, 計算上梁フランジ上下に設けた延長支圧板による補強 効果(コンクリート支圧ブロック幅の拡大)を考慮し ていないためと考えられる.

6. まとめ

生産性の向上及び施工の合理化を目指し,ボルト接 合を用いた SRC 柱鉄骨梁接合部の接合部パネルせん断 性状及び局部支圧性状を把握するために部分骨組実験 を実施し,既往の耐力評価式により実験資料との比較 検討を行った.以下に本研究で得られた知見を示す.

柱梁鉄骨曲げ耐力比が SRC 規準の規定(0.4)より 小さく,柱梁鉄骨の接合にボルト接合を用いた場

図-8 実験値と計算値の比較

合でも,大変形まで大きな耐力低下の無い安定し た履歴性状を示した.

バンドプレートや延長支圧板による補強を施すことにより,最大耐力の上昇,変形性能の向上が見られた.

本柱梁接合部の最大耐力に関して,いずれの接合 タイプも,実験値は計算値を上回っている.梁 ST タイプのバンドプレート補強や柱弱軸方向の場合 のせん断耐力,柱 ST タイプの延長支圧板補強の場 合の局部支圧耐力の評価に関して,評価式の精度 向上のためには,柱鉄骨,バンドプレート及び延 長支圧板の影響を適切に評価する必要がある.

参考文献

- 1) 日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解説, 2001.1
- 2) 岡安隆史ほか:小さいH形鋼を用いた柱SRC梁S構造柱梁 接合部の実験的研究(その1,2) 日本建築学会大会学術講 演梗概集, C-1, pp.1281~1284, 2000.9
- 3) 日本建築学会;鉄筋コンクリート柱・鉄骨梁混合構造の設計 と施工,2001.1

STRUCTURAL BEHAVIOR OF STEEL BEAM-STEEL REINFORCED CONCRETE COLUMN CONNECTIONS USING HIGH-STRENGTH BOLTED CONNECTION

Jun KUBOTA, Toshiyuki FUKUMOTO and Takaharu FUKUDA

This paper proposes new connection details for steel reinforced concrete(SRC) column composite frame systems with steel beams, using small H-shaped steel in the SRC column and using T-stubs or end-plate to connect steel beam to steel column. In this study, structural tests were carried out on the beam-column connections to investigate the structural behavior of the connection panels using T-stub connections and local bearing behavior of the connections using end-plate connections, and the predicted results for ultimate strength were compared with experimental results. The results showed that the beam-column subassemblages had high ductility. The experimental ultimate strength of the specimens was larger than that predicted using the conventional formula.