(32)角形CFT柱・鉄骨梁偏心接合部の通し および内ダイアフラムの各種耐力について

押田 光弘1・立花 正彦2・森田 耕次3

¹ 工修、東京電機大学大学院 先端科学技術研究科 (〒101-8457 東京都千代田区神田錦町2-2) E-mail:04udq03@ms.dendai.ac.jp

²工博、東京電機大学教授 未来科学部建築学科(〒101-8457 東京都千代田区神田錦町2-2) E-mail:tatibana@cck.dendai.ac.jp

3工博、東京電機大学客員教授 建設技術研究所 (〒270-1382 千葉県印西市武西学園台2-1200)

本研究は、角形 CFT 柱の通しダイアフラムに鉄骨梁が偏心して取り付く接合部について、縮小試験体 によって局部引張実験を行い、筆者らが従来より提案している局部引張耐力式の適用性を確認すると共 に、内ダイアフラムも含めて既往の文献より抽出した同種の実験データによって、この局部引張耐力式の 精度を評価したものである。その結果、縮小試験体による実験によっても、提案している局部引張耐力式 は鉄骨偏心梁の通しダイアフラムも含めて、各種耐力を精度良く評価でき、また、本提案式は、内ダイア フラムでも SRC 規準式とほぼ同程度の精度で評価ができることが明らかとなった。

Key Words : CFT, Through Diaphragm, Inner Diaphragm, Local Tensile Strength, Yield Line Theory

1. はじめに

コンクリート充填鋼管(以下CFT)柱-鉄骨梁造 (以下CFT造と略)建築物の柱梁接合部で多く用いら れているのが、有孔通しダイアフラム形式(以下、通 しダイアと略)あるいは有孔内ダイアフラム形式接合 部(以下、内ダイアと略)である。CFT造の普及に伴 って設計が多様化するなか、近年では建物の外柱など において梁芯を柱芯からずらして取り付ける、いわゆ る偏心梁の採用が増加する傾向にある。そこで、筆者 らは鉄骨梁の偏心を考慮できる角形CFT・通しダイア フラム接合部の局部引張耐力式を提案⁹している。

本研究では、有孔通しダイアフラム形式・角形CFT

主 中野社画

柱梁接合部への影響因子に関して、系統的に実験を遂 行しやすい縮小試験体によって、梁偏心率、コンクリ ート打設孔径比、鋼管幅厚比を実験変数とした局部引 張実験を実施し、通しダイアフラム局部引張性状への 実験変数の影響を把握するとともに、本実験の成果な らびに通しダイアフラムのみならず内ダイアフラムも 加えた既往の実験資料によって、ダイアフラム局部引 張耐力の提案式の精度を検証することを目的とする。

- 2. 縮小試験体による実験
- 2.1 試験体の形状と寸法

実験計画を表-1に示す。実験変数は梁の偏心率(3水

主っ 夕井時休空時亦物の知ったかみ

通しダイマ	
	フラム
出寸法	打設孔径
$h_s(\text{mm})d_f$	(mm) d_f/D
1 1	75 0.6
1 1	
1	100 0.8
7.5	
1 1	
	113 0.9
	通しダイア <u>出寸法</u>] <i>h</i> _s (mm) <i>d</i> ₁

準)、打設孔径比(3水準)、鋼管幅厚比(2水準)の 3種類で、試験体数は合計12体である。

試験体の形状と寸法を図-1に、試験体の各部寸法の 組み合わせを表-2に示す。試験体は、角形CFT柱梁接 合部からCFT柱とダイアフラム、梁フランジを取り出 した部分試験体で、実構造物の1/4~1/6程度の縮小試 験体である。柱部材は125mm角の角形鋼管で、梁フラ ンジとダイアフラムは3.2mmの鋼板から一体で切り出 し、梁幅は75mm、ダイアフラムは140×140mmである。 柱鋼管とダイアフラムの溶接部は図-1に示すように部 分溶込み溶接によって構成されている。

使用材料の機械的性質を表-3に、鋼材の応力 - ひず み関係の代表例を図-2にそれぞれ示す。梁およびダイ アフラムに使用した鋼板の降伏点は0.2%オフセット法 により決定した。また、鋼管の素材試験は平板部より 取り出したJIS 5号試験片により行い、その応力 - ひず み関係は図-2に示すように明確な塑性すべりを示さな かったため、その降伏点はGeneral Yield Point法により、 初期勾配と2次割線(=0.5%時と1.0%時による割線) の交点のひずみに対応する応力として求めた。

10

実験および測定方法を図-3に示す。加力は万能試験 機(能力:圧縮・引張1000kN)により、試験体の両端 部の梁フランジに引張力(P)を作用させ、試験体が 著しい耐力低下を生じるまで単調載荷する。またダイ アフラムの局部変形()は、両側の梁フランジ芯上 に設けた測定点間(検長225mm)の変位として計測し た。さらに梁フランジ、鋼管ウェブ、ダイアフラム側 面各部のひずみをそれぞれ計測した。

2.3 実験結果と考察

1) 各部の降伏状況と破壊性状

梁フランジのひずみ分布の代表例を図4に示す。梁 偏心によって梁フランジの偏心側のひずみが反偏心側 に比べて増大している。このことは偏心側の鋼管ウェ ブが梁フランジに影響を与えているためと考えられる。 また、梁偏心率の増大または打設孔径比の減少に伴い、 梁芯のひずみが増大する傾向も認められる。

鋼管ウェブおよびダイアフラム側面のひずみ分布の 代表例を図-5に示す。ダイアフラム側面のひずみは、 いずれの試験体でも鋼管ウェブに比べて大きいが、39-0.6シリーズでは、反偏心側ダイアフラム側面のひずみ が梁フランジ降伏荷重付近までは圧縮側に進行するが、

その後引張側に転化する性状が見られた。

鋼管ウェブ中央のひずみは、ダイアフラムに近づく ほど大きな値を示し、その分布は放物線状である。ま た、偏心側と反偏心側のひずみを比較すると、梁フラ ンジの分布と同様に偏心側の方が大きな値を示す。

39-0.9-0.2試験体では鋼管ウェブの偏心側ダイアフラ ム近傍のひずみは、最大耐力時にほぼ降伏ひずみ近辺 である。その他の試験体では、実験終了時まで降伏ひ ずみに達していない。

試験体の降伏および破断形式を図-6に、最終破壊状 況の代表例を写真-1に、また各試験体の破壊形式を表-4にそれぞれ示す。破壊形式は、梁フランジとダイア フラムとの付け根を始点とする梁フランジの破断 (type A')と、梁フランジの中程の破断(type B)の2 種類が観察され、39-0.8、39-0.9シリーズでは梁が偏心 している試験体にtype A'を示し、39-0.6シリーズと28-0.9シリーズではtype Bが見られる傾向にある。

2) 荷重変形関係

各試験体の荷重変形曲線を実験変数別に図-7に示す。 図中には降伏耐力、塑性耐力および最大耐力の実験値 をそれぞれ、、印で示す。ここで降伏耐力実験 値_EP₂は図-8(a)に示すように、1/3 Slope Factor法により接 線剛性が初期剛性から1/3に低下した時点の荷重、塑性 耐力実験値_EP₂は図-8(b)に示すようにGeneral Yield Point 法により最大耐力時変形の1/2の変形時における2次接 線剛性と初期剛性との交点の荷重として求めた。なお 初期剛性は荷重が最大耐力の1/5の時点における接線剛

表-4 実験結果一覧

	破壊	実験値			計算值					
試験体名		降伏	塑性	最大	降伏耐力		塑性耐力		最大耐力	
	7720	$_E P_y$	$_{E}P_{p}$	$_E P_u$	$_{C}P_{y}$	$_{E}P_{y}/_{C}P_{y}$	$_{C}P_{p}$	$_{E}P_{p}/_{C}P_{p}$	$_{C}P_{u}$	$_{E}P_{u}/_{C}P_{u}$
39-0.6-0	type B	52.9	70.6	85.1	50.9	1.039	70.6	1.000	89.7 *	0.949
39-0.6-0.1	type B	52.2	71.8	86.2	52.0	1.004	72.1	0.996	89.7 *	0.961
39-0.6-0.2	type B	56.6	74.2	86.8	54.7	1.035	75.6	0.981	89.7 *	0.968
39-0.8-0	type B	36.3	60.7	87.9	40.5	0.895	56.7	1.069	85.0	1.034
39-0.8-0.1	type A'	42.1	63.5	87.9	41.4	1.017	57.9	1.098	86.6	1.015
39-0.8-0.2	type B	45.9	69.6	88.6	44.2	1.040	61.6	1.129	89.7 *	0.988
39-0.9-0	type B	31.8	49.5	81.5	35.2	0.904	49.7	0.996	75.7	1.077
39-0.9-0.1	type A'	33.9	49.9	(70.8)	36.1	0.941	50.8	0.982	77.2	(0.917)
39-0.9-0.2	type A'	39.4	57.8	85.5	38.5	1.024	54.0	1.069	81.4	1.050
28-0.9-0	type B	38.6	63.5	88.0	46.2	0.835	66.1	0.961	89.7 *	0.981
28-0.9-0.1	type B	40.3	64.6	88.2	47.1	0.855	67.3	0.960	89.7 *	0.983
28-0.9-0.2	type B	46.1	66.4	87.4	49.6	0.929	70.7	0.939	89.7 *	0.975
						*:計算	値が	梁耐力で	決定し	た試験体

性による。また同図中の×印は梁フランジ縁、 印は 梁フランジ芯のひずみゲージによるひずみ値がそれぞ れ降伏ひずみに達した時点を示す。変形計測の治具は 図-3のように梁フランジ芯に取り付いているため、 印以前ではダイアフラムの変形を計測していると言え るが、 印以後では梁フランジの変形が計測結果に大 きく影響していると考えられる。

各種耐力の実験値を表-4に、塑性耐力の実験値 $_{e}P_{p}$ と 各実験変数との関係を図-9(a) ~ (c)にそれぞれ示す。な お39-0.9-0.1試験体では梁フランジ付け根にR加工が施 されていなかったため、他の試験体に比べて早期に梁 フランジが破断、最大耐力が低下している。以下に、 各実験変数別に検討する。

梁偏心率 初期剛性は、梁偏心率による相違は 認められず、ほぼ同じである。降伏後の剛性は、偏心 率が大きいほど高くなる傾向を、また、最大耐力時の 変形は、梁偏心率が大きいほど小さくなる傾向をそれ ぞれ示す。降伏および塑性耐力は、梁偏心率が大きい ほど高くなる傾向を示す。最大耐力は、梁フランジが 破断したため梁偏心率に関わらずほぼ同じ値を示す。

打設孔径比 初期剛性は、打設孔径比が増大する ことにより低下し、その後の剛性も低下する傾向にあ る。また、最大耐力時の変形は、孔径比が0.6~0.8に かけては増大する傾向を示すが、0.8~0.9では、ほぼ 同程度か小さくなる傾向を示す。降伏、塑性耐力およ び最大耐力は、当然のことながら打設孔径比が大きい ほど小さくなる傾向を示す。

鋼管幅厚比 初期剛性は、鋼管幅厚比が増大する ことにより高くなり、その後の剛性も高くなる傾向を 示す。また、最大耐力時の変形は、ほぼ同程度である。 降伏および塑性耐力は、鋼管幅厚比が大きいほど高く なる傾向を示す。最大耐力は、梁偏心率が0.0~0.1で は鋼管幅厚比が小さいほど高くなる傾向を示す。

3) 各種耐力の実験値と計算値の比較

i) 通しダイアフラム接合部の降伏機構と提案式

筆者らは角形CFT・有孔通しダイアフラム接合部に 対する降伏機構として、図-10のようなmode Aの降伏機 構を仮定し、降伏線理論によって評価することで得ら れる耐力式を提案している。以下にその詳細を示す。

mode Aは、通しダイアフラムと鋼管フランジが降伏 する機構である。SRC規準¹⁴⁾に示されている角形 CFT・有孔内ダイアフラム接合部に対する降伏機構を 直接適用することが、通しダイアフラムの鋼管外側部 分の変形適合を考慮すると困難であるため、円形 CFT・有孔通しダイアフラム接合部に対する降伏機構 を参考に提案したものである。

図-10(a)に示すような接合部の全塑性状態において、 梁フランジに作用する引張軸力によってダイアフラム にabおよびcd部に複合応力による引張降伏を生じるこ とで梁フランジの変位が となり、それに伴い図-10(a) 中(ii)の梁フランジと柱鋼管フランジが取り合う部分の AA'、BB'、CC'およびDD'部が曲げ降伏を、またAB、 A'B'、CDおよびC'D'部がパンチングシヤー降伏をそれ ぞれ生じ、面外変形量 を生じるとしている。以上よ り、内部仕事の総和が外部仕事の総和と等しいことか

ら を消去し、塑性耐力 $_{C}P_{p}(A)$ を導出している。

このmode A式の特徴として、 接合部の降伏機構を 仮定して降伏線理論により評価し、式を導出している、

梁偏心量eを変数とし、梁無偏心の状態から梁フラ ンジ縁と鋼管外側面が一致する状態(最大偏心状態) までを連続的に評価できることが挙げられる。

降伏耐力_{$CP_y}(A)は塑性耐力_{<math>CP_p}(A)のダイアフラムと$ 鋼管フランジの項に<math>3/4、2/3という係数をそれぞれ乗 じ、最大耐力_{$CP_u}(A)は塑性耐力提案式中の降伏応力度$ $<math>D_y$ 、 C_y をそれぞれ引張強さ D_u 、 C_u に置き換えて 求めるとして提案している。</sub></sub></sub>

ii) 実験値との比較・検討

提案式から得られた各種計算値および実験値との比 を表-4 に、また、各種耐力の実験値と計算値との比較 を図-11(a)~(c)に示す。

32 - 4

各試験体の降伏耐力の計算値は、梁部材の素材試験 結果より求めた梁フランジ降伏引張耐力の計算値 (_BP_y=67.3 kN)を下回っており、ダイアフラムの降伏 が先行したものと考えられる。

これら降伏および塑性耐力の計算値 $_{CP_{y}}$ および $_{CP_{p}}$ は、梁偏心率が大きくなるほど若干安全側の評価となる傾向にあるが、降伏耐力では $_{EP_{y}/CP_{y}}=0.835 \sim 1.040$ (標準偏差 0.072)、塑性耐力では $_{EP_{p}/CP_{p}}=0.960 \sim 1.129$ (標準偏差 0.058)の範囲である。

以上より、提案式は、降伏および塑性耐力の実験値 を良く説明しているものと考えられる。

計算値が $_{CP_{u}} < _{BP_{m}}$ (梁フランジ最大引張耐力、89.7 kN)の試験体は、写真-1 で示したようにダイアフラム と梁フランジの付け根部を始点として梁フランジが破 断し、 $_{EP_{u}/_{C}P_{u}}$ =1.015~1.050(標準偏差 0.017)である。 これは、最終的にはダイアフラム近傍からの梁フラン ジの破断であり、ダイアフラムの強度が最大耐力に影 響していると考えられる。

計算値が $_{CP_u} > _{BP_m}$ の試験体は、梁中間部で破断しており、39-0.6 シリーズでは $_{EP_u/_{C}P_u}=0.949 \sim 0.968$ (標準偏差 0.010)であり、28-0.9 シリーズでは $_{EP_u/_{C}P_u}=0.975 \sim 0.983$ (標準偏差 0.004)である。実験値は計算値 $_{bP_m}$ を下回っているが、これは、ひずみ性状で示したように梁フランジに応力集中が生じ、それが影響したものと考えられる。

3.既往の実験資料による精度比較

3.1 抽出した実験資料の概要

本章では、前章に示した縮小試験体に加えて、同様 に柱CFTと鉄骨梁フランジのみを取り出した既往の局 部引張実験資料を用いて提案式の精度を検証する。な お、本研究で取り上げた実験資料は、2005年度までに 発表された日本建築学会大会学術講演梗概集、日本建 築学会構造系論文集、鋼構造論文集、鋼構造年次論文 報告集より抽出したものである。これら既往の実験資料を、文献毎に主な実験変数の組み合わせ範囲として 表-5に示す。

試験体および取扱いの概要は以下の通りである。

1)抽出できた文献数は11編^{1)~13)}で、これらに記載 されている通しダイア試験体30体と内ダイア試験体40 体の、計70体を対象とした。このうち、梁偏心の試験 体は通しダイアでは文献1)の7体、内ダイアでは文献1) および11)の10体であった。

2) 柱鋼管の外径は、200、250、300mmが用いられ ており、幅厚比D/tは22~78の範囲だが、6割の試験体 が30~40であった。

3)ダイアフラムに設けられた打設孔の径は、柱径 に対する比d_f/Dで0.3~0.9と広範だが、約半数の試験体 が0.6~0.7である。

4) 柱幅に対する梁偏心量の比(梁偏心率) e/Dは、 通しダイアで0~0.30、内ダイアで0~0.23の範囲だが、 梁無偏心の試験体が約8割を占めている。

5)通しダイアのダイアフラム出幅比*h_s*/*D*は、0.06の試験体が約6割で、最大0.2であった。

6)梁フランジ厚に対するダイアフラム厚の比は、 通しダイアで1.0(同厚)の試験体が約6割で、内ダイ アでは0.4~0.5、0.7~0.8、1.0がそれぞれ2割強であった。

7) 柱鋼管厚に対するダイアフラム厚の比は、通し ダイアでは0.9~1.1が7割で、内ダイアでは0.9~1.1、2.0 以上にそれぞれ約2.5割程度であった。

8) 柱鋼管の降伏点は、通しダイアでは約8割、内 ダイアでは6割の試験体が300~400(N/mm²)であった。 また内ダイアでは600~800(N/mm²)が1割程度である。

9)ダイアフラムの降伏点は、通しダイアでは300 ~400、400~500(N/mm²)がそれぞれ4割弱で、内ダ イアでは300~400(N/mm²)が約半数、400~500 (N/mm²)が4割弱であった。

10)本研究で対象とした実験形式では、鉄骨梁フランジの引張力とダイアフラム局部変形の関係は単調増

		<u></u> <u></u> ++ E ← /+ ++ ++	柱径	柱幅厚比	柱幅梁フランジ幅比	ダイア出幅比	打設孔径比	柱・ダイア板厚比
		ā11、時央144-92X	D (mm)	D/t	B_f/D	h_s/D	d_f/D	t_s / t_c
×.	本実験	12	125	28, 39	0.6	0.06	0.6, 0.8, 0.9	0.71, 1.0
週	文献1)	11	250	28, 42	0.4, 0.6	0.06	0.6, 0.8	1.0
し	文献2)	6	200	33	0.25, 0.5, 0.75	0.10	0.45, 0.6	1.0, 2.0
1	文献3)	5	200	33	0.35, 0.5, 0.65	0.10	0.6	1.0
7	文献4)	2	250	29	0.5	0.20	0.65, 0.73	3.0
	文献5)	6	200	35, 50, 65	0.5, 0.65	0.06	0.6	1.0, 1.5, 2.0
	文献4)	2	250	27.78	0.5	0.0	0.34, 0.5	2.78
	文献5)	6	200	34.6, 48.6, 64.8	0.5, 0.65	0.0	0.57, 0.67, 0.75	1.02, 1.42, 1.89
内	文献6)	7	300	25, 33.3	0.33 ~ 0.66	0.0	0.47, 0.67	0.5, 0.67, 1.33
ダ	文献7)	3	300	33.3, 50	0.53, 0.6, 1.0	0.0	0.4, 0.7	1.0, 1.5
イ	文献8)	4	300	24.3, 31.9	0.58	0.0	0.67	0.77 ~ 1.28
ア	文献9)	8	200	22.2, 33.3	0.5, 0.75, 1.0	0.0	0.5, 0.67	1.33, 2.0
	文献10)	8	300	25, 33.3, 50	0.53, 0.6	0.0	0.4, 0.7	0.75, 1.0, 1.5
	文献11)~13)	2	250	39.2	0.6	0.0	0.8	0.95
-								
		梁·ダイア板厚比	偱	晶心率	柱素材降伏点	柱素材引張強度	ダイア素材降伏点	ダイア素材引張強度
		梁·ダイア板厚比 	條 e /B _f	心率 e/D	柱素材降伏点 (N/mm ²)	柱素材引張強度 (N/mm ²)	9 ⁻ 17素材降伏点 (N/mm ²)	ダイア素材引張強度 (N/mm ²)
 	本実験	梁· ダイア 板厚比	作 <i>e /B_f</i> 0 ~ 0.33	心率 e/D 0~0.2	柱素材降伏点 (N/mm ²) 354、365	柱素材引張強度 (N/mm ²) 427、459	タイア素材降伏点 (N/mm ²) 294	9 ⁻ イア素材引張強度 (N/mm ²) 392
通 L	本実験 文献1)	梁·ダイア板厚比 t _s /t _f 1.0 0.5、0.6	作 <i>e</i> /B _f 0 ~ 0.33 0 ~ 0.75	<u>e/D</u> 0~0.2 0~0.3	柱素材降伏点 (N/mm ²) 354、365 397、453	柱素材引張強度 (N/mm ²) 427、459 467、523	ダイア素材降伏点 (N/mm ²) 294 401、420	9[°]17素材引張強度 (N/mm ²) 392 562、574
通しダ	本実験 文献1) 文献2)	梁·ダイア板厚比 <i>t_s / t_f</i> <u>1.0</u> 0.5、0.6 <u>1.0</u>	e/B_f $0 \sim 0.33$ $0 \sim 0.75$ 0.0		柱素材降伏点 (N/mm ²) 354、365 397、453 344、399	柱素材引張強度 (N/mm ²) 427、459 467、523 410、456	9 17 素材降伏点 (N/mm ²) 294 401、420 259 ~ 295	ダ 17素材引張強度 (N/mm ²) 392 562、574 391~458
通しダイ	本実験 文献1) 文献2) 文献3)	梁· 9 77板厚比 <i>t_s / t_f</i> 1.0 0.5, 0.6 1.0 1.0	$ \begin{array}{c} e / B_f \\ 0 \sim 0.33 \\ 0 \sim 0.75 \\ 0.0 \\ 0.0 \end{array} $	<i>e/D</i> 0∼0.2 0∼0.3 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350	柱素材引張強度 (N/mm ²) 427、459 467、523 410、456 503	9[']17素材降伏点 (N/mm ²) 294 401、420 259~295 336	9 17素材引張強度 (N/mm ²) 392 562, 574 391~458 479
通しダイア	本実験 文献1) 文献2) 文献3) 文献4)	梁· 9 47板厚比 1.0 0.5、0.6 1.0 1.0 1.0	$ \begin{array}{c} e/B_f \\ 0 \sim 0.33 \\ 0 \sim 0.75 \\ 0.0 \\ 0.0 \\ 0.0 \end{array} $	e/D 0~0.2 0~0.3 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354、365 397、453 344、399 350 393	柱素材引張強度 (N/mm ²) 427、459 467、523 410、456 503 477	917素材降伏点 (N/mm ²) 294 401、420 259~295 336 273	9 17素材引張強度 (N/mm ²) 392 562, 574 391~458 479 446
通しダイア	本実験 文献1) 文献2) 文献3) 文献4) 文献5)	梁· <i>91</i> 7板厚比 <i>t_s / t_f</i> 1.0 0.5、0.6 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} & & & \\ e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ \hline 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389	柱素材引張強度 (N/mm ²) 427,459 467,523 410,456 503 477 304~462	9 17素材降伏点 (N/mm ²) 294 401、420 259 ~ 295 336 273 302	9 17素材引張強度 (N/mm ²) 392 562、574 391 ~ 458 479 446 433
通しダイア	本実験 文献1) 文献2) 文献3) 文献4) 文献5) 文献4)	梁・ 9 17板厚比 t_s/t_f 1.0 0.5, 0.6 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} & & & \\ e/B_f \\ 0 \sim 0.33 \\ 0 \sim 0.75 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477	917素材降伏点 (N/mm ²) 294 401, 420 259~295 336 273 302 273	9 17素材引張強度 (N/mm ²) 392 562、574 391~458 479 446 433 446
通しダイア	本実験 文献1) 文献2) 文献3) 文献4) 文献5) 文献4) 文献4) 文献5)	梁・ 9 17板厚比 t_s/t_f 1.0 0.5、0.6 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} & & \\ & e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ \hline \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244, 318, 389	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477 304, 384, 462	ダイア素材降伏点 (N/mm ²) 294 401、420 259~295 336 273 302 273 302	9 17素材引張強度 (N/mm ²) 392 562、574 391 ~ 458 479 446 433 446 433
通しダイア 内	本実験 文献1) 文献2) 文献3) 文献4) 文献5) 文献4) 文献5) 文献5) 文献5) 文献5) 文献5) 文献5) 文献5)	梁· 步 77板厚比 <u>t_s/t_f</u> 1.0 0.5, 0.6 1.0 1.0 1.0 1.0 1.0 1.0 0.32, 0.63	$\begin{array}{c} & & \\ & e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244, 318, 389 321, 344, 365	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477 304、384, 462 456, 539, 543	ダイア素材降伏点 (N/mm ²) 294 401、420 259~295 336 273 302 273 302 406、408	9 17素材引張強度 (N/mm ²) 392 562、574 391~458 479 446 433 446 433 566、580
通しダイア 内ダ	本実験 文献1) 文献2) 文献3) 文献4) 文献5) 文献5) 文献5) 文献5) 文献5) 文献5) 文献6) 文献7)	梁 · 9 77 板厚比 t_s/t_f 1.0 0.5, 0.6 1.0 1.0 1.0 1.0 1.0 1.0 0.32, 0.63 0.47	$\begin{array}{c} & & \\ & e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline 0.0 \\ 0.0 \\ \hline \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244, 318, 389 321, 344, 365 360, 400	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477 304, 384, 462 456, 539, 543 447, 488	ダイア素材降伏点 (N/mm ²) 294 401、420 259~295 336 273 302 273 302 273 302 273 302 273 302	9 17素材引張強度 (N/mm ²) 392 562, 574 391~458 479 446 433 446 433 566, 580 433, 446
通しダイア 内ダイ	本実験 文献1) 文献2) 文献3) 文献4) 文献5) 文献5) 文献5) 文献5) 文献5) 文献6) 文献7) 文献8)	梁 · f 77板厚比 t_s/t_f 1.0 0.5, 0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.32, 0.63 0.47 0.56~1.0	$\begin{array}{c} & & \\ & e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ \hline 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \hline \end{array}$	e/D 0~0.2 0~0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244~389 393 244, 318, 389 321, 344, 365 360, 400 684, 738	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477 304, 384, 462 456, 539, 543 447, 488 830, 866	ダ17素材降伏点 (N/mm ²) 294 401,420 259~295 336 273 302 273 302 406,408 279,287 443~537	ダ 17素材引張強度 (N/mm ²) 392 562, 574 391~458 479 446 433 446 433 566, 580 433, 446 591~668
通しダイア 内ダイア	本実験 文献1) 文献2) 文献3) 文献3) 文献4) 文献5) 文献4) 文献5) 文献6) 文献6) 文献7) 文献8) 文献8)	梁 · 9 17板厚比 t_s / t_f 1.0 0.5、0.6 1.0 1.0 1.0 1.0 1.0 0.32、0.63 0.47 0.56 ~ 1.0 0.75	$\begin{array}{c} & & \\ e/B_f \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ 0.0$	e/D 0~0.2 0~0.3 0.0	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244~389 321, 344, 365 360, 400 684, 738 379, 381, 459	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304~462 477 304~462 456, 539, 543 447, 488 830, 866 526, 527, 624		ダ 17素材引張強度 (N/mm ²) 392 562、574 391 ~ 458 479 446 433 446 433 566、580 433、446 591 ~ 668 531、603
通しダイア 内ダイア	本実験 文献1) 文献2) 文献3) 文献3) 文献4) 文献5) 文献6) 文献6) 文献7) 文献8) 文献7) 文献8) 文献7) 文献7)	梁 · 夕 17板厚比 t_s/t_f 1.0 0.5, 0.6 1.0 1.0 1.0 1.0 1.0 0.32, 0.63 0.47 0.56 ~ 1.0 0.75 0.47, 1.0	$\begin{array}{c} e/B_{f} \\ \hline 0 \sim 0.33 \\ 0 \sim 0.75 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.33, 0.44 \end{array}$	e/D 0~0.2 0~0.3 0.0 0.2, 0.23	柱素材降伏点 (N/mm ²) 354, 365 397, 453 344, 399 350 393 244~389 393 244, 318, 389 321, 344, 365 360, 400 684, 738 379, 381, 459 380, 405	柱素材引張強度 (N/mm ²) 427, 459 467, 523 410, 456 503 477 304 ~ 462 477 304, 384, 462 456, 539, 543 447, 488 830, 866 526, 527, 624 526, 528, 541	ダイア素材降伏点 (N/mm ²) 294 401, 420 259 ~ 295 336 273 302 273 302 406, 408 279, 287 443 ~ 537 382, 430 380, 427	ダ 17素材引張強度 (N/mm ²) 392 562、574 391 ~ 458 479 446 433 446 433 566、580 433、446 591 ~ 668 531、603 526、544

表-5 既往の実験資料の試験体概要

各記号は図-1による。内ダイアフラム形式は通しダイアフラムの出幅 h=0と考える。

加となるが、異なる研究者によって行われた複数の研 究・実験を統一して論じるにあたり、本研究では耐力 の定義を統一するため、初期剛性、降伏および塑性耐 力は2.3章1)項および図-8中に示す方法によった。なお、 文献中に荷重変形関係が記載されていない、あるいは 記載されているが印刷の都合で読み取れなかった6体 の試験体については最大耐力のみを検討した。

11)既往の実験資料を取り扱うに当り、角形CFT・ 有孔通しダイアフラム形式接合部の降伏機構として、 図-10(a)に示す他に図-10(b)に示すmode Bが考えられる。 これは、梁フランジが取り付く鋼管外側ダイアフラム が降伏する機構である。よって、角形CFT・有孔通し ダイアフラムの塑性耐力は_cP_p(A)および_cP_p(B)のうち小 さい方を採ることで評価できる。

12) 内ダイアフラムも通しダイアフラムと同様の形状をしていることから、本研究では内ダイアフラム試験体の計算値を、mode Aでは提案式中のダイアフラム 出幅h。をゼロとして、mode Bを梁フランジの耐力としてそれぞれ求めている。

3.2 通しダイアフラム形式接合部での精度比較

通しダイアフラムでの、提案式による各種耐力の計 算値と実験値との比較を図-12(a)~(c)に、また、SRC規 準式¹⁴⁾による計算値と実験値との比較を図-14 (a)~(b) にそれぞれ示す。なお、SRC規準には通しダイアフラ ムの塑性耐力式は規定されていない。

図-12より、通しダイアフラムでは、提案式は梁が偏 心した試験体も含めて平均値1.01 ~ 1.10、標準偏差0.1 前後と精度良く評価している。一方、図-14に示すよう に梁偏心の試験体を除外した23体をSRC規準式で評価 すると平均値1.34 ~ 1.67、標準偏差1以上とバラツキが 大きい。これは図-14中の 印の試験体で規準式の適用 範囲より大きい孔径の打設孔を設けていたためである。 これら3体のデータを除くと平均値0.924 ~ 1.204、標準 偏差0.144 ~ 0.184となる。

3.3 内ダイアフラム形式接合部での精度比較

内ダイアフラムでの、提案式による各種耐力の計算 値と実験値との比較を図-13(a)~(c)に、また、SRC規準 式による計算値と実験値との比較を図-15(a)~(b)にそ れぞれ示す。なお、内ダイアフラムの梁最大偏心の試 験体については文献10)に記載される耐力式により計算 値を求めている。

図-13より、提案式は、平均値1.05~1.17、標準偏差 0.2程度である。それに対し、図-15に示すようにSRC規 準式では許容耐力式(本研究で定義している降伏耐力 に相当)は規定されていないものの、塑性および最大 耐力では平均値は1.05~1.11、標準偏差は0.23前後であ る。このことより、内ダイアフラムでは全体として、 提案式はSRC規準式とほぼ同等の精度の評価を与える

と考えられるが、最大耐力の評価に関 してはSRC規準式の方が精度が良いと 言える。

また、図-13の および 印で示され る試験体において実験値が計算値を大 きく下回っているが、これらはダイア フラムおよび鋼管に高張力鋼を用いた 試験体であり、提案式の鋼材の降伏応 力度および引張強さに何らかの適用範 囲を設ける必要があることを示唆して いると考えられる。

4. まとめ

鉄骨偏心梁の取り付く角形CFT柱梁 接合部について、通しダイアフラムと して仮定した降伏モデルを降伏線理論 によって評価した降伏耐力、塑性耐力 および最大耐力の提案式を、縮小試験 体による引張実験成果ならびに既往の 文献より抽出した通しダイアフラムの 実験資料によって検討した。また、内

ダイアフラムについても提案式を既往の文献より抽出 した実験資料によって検討し、適用性を確認した。

その結果、通しダイアフラムの提案式は、縮小試験 体および既往の実験資料の実験値と計算値の比の平均 で降伏耐力1.01、塑性耐力1.02、最大耐力1.06と精度良 く説明できる。また、提案式を内ダイアフラムに適用 した場合でも降伏耐力1.05、塑性耐力1.11、最大耐力 1.17と偏心を考慮した既往の耐力式とほぼ同程度に局 部引張耐力を評価できることが明らかとなった。

謝辞:本研究は千葉大学工学部デザイン工学科森田研 究室および東京電機大学建設技術研究所(担当:工学 部建築学科立花研究室)との共同研究として実施され たものである。また、既往の実験資料に関する検討は (社)新都市ハウジング協会・CFT造設計法研究会・接 合部研究WG(研究会主査:福元敏之、WG主査:一戸 康生)の活動の一環¹⁵として実施されたものである。 御協力頂いた関係各位に深く感謝いたします。

参考文献

- 1) 押田、一戸、石橋、齋藤、福元、立花、森田:鉄骨偏心梁 の取り付く通しダイアフラム形式・角形CFT柱梁接合部の力 学的性状、鋼構造論文集、第12巻第47号、pp.23~32、2005.9
- 2) 松井、近藤:コンクリート充填角形鋼管柱とH形鋼梁の接合 部に関する研究、日本建築学会大会学術講演梗概集C、pp.1661 ~1662、1979.9
- 3) 椎葉、原田、飯島:充填型鋼管コンクリート構造に関する 実験的研究(その2)接合部・単純引張実験、日本建築学会 大会学術講演梗概集、C、pp.1853~1854、1992.8
- (4) 渡邊、菊川、鴨下、中嶋:コンクリート充填鋼管柱梁接合 部に関する研究、日本建築学会大会学術講演梗概集C-1、pp.1165 ~1168、1998.9
- 5)河野、松井、村井:コンクリート充填角形鋼管柱とH形鋼梁

のダイアフラム補強型接合部の局部変形に対する荷重-変形 関係モデル、鋼構造論文集、第5巻第17号、pp.93~104、1998.3

- 6)飯田、稲井、島崎:円孔を有するダイアフラムを用いた接 合部の引張実験 - 鋼管コンクリート構造における柱・梁接合 部に関する研究 -、日本建築学会大会学術講演梗概集、C、 pp.1547~1548、1994.9
- 7) 森田、横山、川又、松村:コンクリート充てん角形鋼管柱-鉄骨はり接合部の内ダイアフラム補強に関する研究、日本建築学会構造系論文報告集、第422号、pp.85~96、1991.4
- 8) 森田、寺岡、鈴木、藤原、鏑流馬:高張力鋼を用いたコンク リート充てん角形鋼管柱-鉄骨はり接合部の力学的性状に関 する研究、日本建築学会構造系論文報告集、第446号、pp127 ~136、1993.4
- 9) 福元、瀧:コンクリート充填角形鋼管柱・鉄骨梁接合部局部 の弾塑性性状に関する研究 - 梁幅が広い内部補強形式接合部 - 、日本建築学会構造系論文集、第560号、pp.213 ~ 220、 2002.10
- 10) 森田、鏑流馬、付、寺岡、横山:コンクリート充填角形鋼 管柱-鉄骨はり偏心接合部の力学的挙動、鋼構造年次論文報 告集、第1巻、pp.147~154、1993.7
- 11)一戸、福元、時野谷、齋藤、立花、森田:鉄骨偏心梁の取 り付く通しダイアフラム形式・CFT柱梁接合部の力学的性状
 その1 実験計画 -、日本建築学会大会学術講演梗概集C-1、 pp.1097~1098、2004.8
- 12)石橋、増子、植木、小澤、立花、森田:鉄骨偏心梁の取り 付く通しダイアフラム形式・CFT柱梁接合部の力学的性状 -その2 実験結果 - 、日本建築学会大会学術講演梗概集C-1、 pp.1099~1100、2004.8
- 13) 押田、齋藤、一戸、福元、立花、森田: 鉄骨偏心梁の取り 付く通しダイアフラム形式・CFT柱梁接合部の力学的性状 -その3 実験結果の考察と解析 - 、日本建築学会大会学術講演 梗概集C-1、pp.1101~1102、2004.8
- 14)日本建築学会:鉄骨鉄筋コンクリート構造計算規準・同解 説、2001.1
- 15)新都市ハウジング協会:角形CFI柱梁接合部設計指針、 通しダイアフラムおよび内ダイアフラムを用いた接合部-、 2006.4

Study on Local Tensile Strength of Connections with Eccentricity between Steel Beam and Concrete-Filled Square Tubular Steel Column Reinforced with Through or Inner Diaphragm

Mitsuhiro OSHIDA, Masahiko TACHIBANA and Koji MORITA

This paper discusses the yield, plastic and ultimate strength of the connection with eccentricity between a steel beam and the CFT square steel column reinforced with the through or inner diaphragm. The local tensile tests of 12 small scale specimens with the through diaphragm are carried out. And the experimental data of through (30 specimens) and inner (40 specimens) diaphragm specimens which were tested by other researchers are collected.

As a result, strength capacities of the connection can be estimated by the superposition of the capacity of the column flange and the through diaphragm which are calculated with Yield Line Theory. The analytical strengths agree comparatively well with experimental data.