(25) 道路橋における鋼・PC複合上部工 の複合部構造について

真田 修

1正会員 日本道路公団 横浜管理事務所 (〒226-0026 神奈川県横浜市緑区長津田町5509) E-mail:osamu.sanada@jhnet.go.jp

常磐自動車道鐙川橋は、宮城県東部に位置し、交差物として鐙川排水路他2排水路があり、最大径間 94.5m、橋長196.9mとなる橋梁である。基本詳細設計業務で、「鋼3径間連続箱桁」と、複合構造である 「鋼3径間連続箱桁+PRC箱桁」とを経済比較の上、後者を採用することとした。本形式では、中央径間に 比べて支間長が短い側径間に、コンクリート部材を「カウンターウエイト」的に使用することにより、橋 台での負反力発生を抑止する効果がある。また、鋼とコンクリート部材の接合部には「中詰コンクリート 方式」を採用した。本報文では、詳細設計で検討した、鋼とPC部材の接合部構造に関する工夫の一事例を 紹介する。

Key Words :shear connector, super structure, non-linear model, stud connector, average shearing force

1. はじめに

常磐自動車道鐙川橋(以下、本橋)は、宮城県東部に 位置し、交差物として鐙川排水路他2排水路があり、支 間長50.0m+94.5m+50.0m、橋長196.9mとなる橋梁である。 一般図を図-1に示す。

基本詳細設計業務で、「鋼3径間連続箱桁」と、複合 構造である「鋼3径間連続箱桁+PRC箱桁」(以下、本 形式)とを経済比較の上、後者を採用することとした。 本形式では、中央径間に比べて支間長が短い側径間に、 コンクリート部材を「カウンターウェイト」的に使用す ることにより、橋台での負反力を防止する効果がある。

また、鋼桁とPRC桁の接合部には「中詰コンクリート 方式」を採用した。

表─1 稿梁諸元					
設計条件					
信長		196.900 m 桁 長 195.900 m			
道路区分		第1種第2級B規格			
荷重		B活荷重			
<i>Ħi s</i> ť		鋼3径間連続箱桁槽+PRC箱桁槽			
支間		50.00 m + 94.50 m + 50.00 m			
有効幅員		下り線 10.000m 斜角 90°00'00"			
横断勾配		i=2.500%			
縦断勾 龍		i=0.844% i=1.220%			
設計震度		kh=0.30(0.24)			
<i>îii</i> j	主桁鋼材	SM490Y, SM400			
£	床版コンクソート	$\sigma ck = 30 N \times m m^2$			
部桥	鉄筋	SD345			
IR	主桁鋼材	SWPR19L, IS28. 6			
C Mij	コンクリート	$\sigma ck = 36 \text{N/mm}^2$			
下 コンクリート		$\sigma ck=24N/mm^2$, $\sigma ck=30N/mm^2$			
I I	鉄 筋	SD345			
<u>*</u> & I		場所打ち杭(ゆ1500,支持杭)			
適用規準		平成14年3月 道路橋示方書。周解説			
		平成12年1月 設計要領 第2集			

本論文では、詳細設計(以下、本設計)で検討した。 鋼とPC部材の接合部構造に関する工夫の一事例を紹介 する。

2. 橋梁諸元と接合部構造

(1) 橋梁諸元

橋梁諸元を表-1に示す。また、代表的な橋梁断面図を 図-2に示す。

(2) 接合部構造

本橋の鋼桁とPRC桁の接合部は「中詰コンクリート方 式」を採用したが、その構造は鋼箱桁(鋼殻)の上下フ ランジおよびウェブにずれ止めを配置し、鋼殻内に高流 動コンクリートを打設して接合するものである。設計思 想として、接合部の鋼とコンクリートの力の伝達は、 100%ずれ止めで行うこととした。また、ずれ止めには、 頭付きスタッドジベル(以下、スタッド)とPBLについ て比較検討を実施したが、ずれ止めの方向性および経済 性からスタッドを採用した(図-3参照)。

3. 接合部 (スタッド) の設計

(1) 基本設計思想

接合部は、スタッドで連結された鋼殻と充填コンクリートの合成断面として挙動するが、本設計では、接合部 に生じる設計断面力に対して、鋼およびコンクリートが 単独で抵抗できる断面とした。

スタッドについては、接合部の設計断面力を、上下フ

ランジに生じる力、各ウェブに生じる力に分解し、それ ぞれの分担力をスタッドの許容値で除して算出されるス タッドの必要本数を、各部位に格子配置することとした。 当初スタッド配置の概念を図-4に示す。

(2) FEM解析モデル

3.(1) にて決定したスタッド配置に着眼して、接合部の構造妥当性を検証することを目的とした立体FEM解析

図-2(1) 橋梁断面図 (PRC 桁部)

図-2(2) 橋梁断面図(鋼桁部)

図-3 接合部イメージ図

を実施した。なお、解析には汎用構造解析プログラム Marcを用いた。

a) 解析領域

解析モデルは、橋梁断面の対象性から1/2モデルと し、橋軸方向の長さは着目接合部(長さ2m)に鋼桁お よびPRC桁の幅員相当の長さを加えた範囲を解析範囲と 設定した。モデル図を図-5に示す。

b) 要素およびメッシュ

鋼部材を4節点シェル要素、コンクリート部材を8節 点ソリッド要素でモデル化した。PRC桁に内在するPC鋼 材については、接合部近辺ではほぼ直線配置であること から、モデル化はせず、PC鋼材定着部からの面圧力とし てプレストレスの影響を考慮することとした。

c) 材料物性

解析に使用した材料の物性値を表-2に示す。

d) スタッドのモデル化

スタッドは、線形バネとしてモデル化を行ったが、バネ定数については既往の要素試験結果を参考に、表-3のように設定した。

なお、本橋の接合部に用いたスタッドは径22mm、長さ 200mmである。

また、鋼部材とコンクリート部材の接触面については 摩擦および付着は考慮していない。

e) 境界条件

PRC桁のプレストレスについては、3. (2)b)で述べたとおり、定着部からの面圧力として考慮した。概念図を

F1 = N/2+M/h F2 = S

図-4(1) 接合部断面力の分解(面内)

図-4(2) 接合部断面力の分解(トルク)

図-5 モデル図

図-6に示す。

設計荷重については、接合部の正曲げおよび負曲げが 最大となる荷重ケースに着目し、同時性を考慮した境界 断面力を作用させた。設計荷重載荷の概念図を図-7に、 また、境界断面力の値を表-4に示す。

(3) FEM解析結果

鋼桁およびPRC桁に発生する応力度については、許容 値を上回るような応力集中などもなく、構造物として健 全であることが確認できた。しかし、スタッドに生じる 水平せん断力について特筆すべき結果となった。

図-8に接合部下フランジの正曲げ最大時のスタッドに 生じる水平せん断力の分布を示す。図-8の横軸について、 紙面左側の軸は橋梁断面方向の座標を、右側の軸は、橋 軸方向の座標を、縦軸はスタッド1本あたりの水平せん 断力を示している。

以下に、正曲げ最大時の下フランジについて、結果を 示す。図-8から、橋軸方向に着目した場合、主桁剛性の 変曲点に近い鋼桁側のスタッドのせん断力が、かつ、橋 軸直角方向に着目した場合、剛性の高いウェブ近傍のス タッドのせん断力が卓越する分布を示した。その値は最 大で、Qmax =70.7kN/本となった。

この結果は、鋼殻にコンクリートが充填された剛度の 高い接合部に対して、比較的柔な構造である鋼桁との相 対ずれ量が大きい鋼桁側、かつ、接合部内でもより剛性 の高いウェブ近傍のせん断力が大きくなるという定性的 な理解と一致する。しかし、その値は道路橋示方書¹⁾に より算出されるスタッドの許容せん断力Qa = 27.3kN/ 本に対して2.5倍以上の値を示しており、降伏に対する 許容せん断力の安全率3に迫る値となった。

また、他の解析ケースについても同様の結果となった。

(4) 接触条件の見直し

前項3.(3)で示したとおり、スタッドに生じるせん断 力の分布特性から、格子配置の角部のスタッドには許容 値を上回るせん断力が生じることが確認された。そこで、 対策を検討する中で、スタッドに着目した場合、接触未 考慮の線形解析は安全側ではあるが、実挙動に近い評価 を行えるとはいえないとの判断に基づき、接触を考慮す る(互いに押しつける力は伝達し、離れる方向の力は伝 達しないモデル)非線形解析へ見直すこととした。

解析条件を見直した結果、鋼部材とコンクリート部材 の接触により伝達される力と、スタッドで伝達される力 に分担されるため、前項で示したスタッドのせん断力は 全体的に低減され、ピーク値に着目すると約30%の低 減であった。しかし、依然として、許容せん断力を大き く上回っており、次項に示す対策を検討した。

表-2 材料物性值

	ヤング率 (N/mm ²)	ポアソン比
鋼部材	$2.00 imes 10^{5}$	0.3
コンクリート部材(PRC 桁)	$2.98 imes 10^{4}$	0.17
コンクリート部材(RC 床版)	$2.80 imes 10^{4}$	0.17

表-3 スタッドのバネ定数 (N/mm)

	接合部スタッド
スタッド軸方向	$3.80 imes 10^{5}$
スタッド軸直角方向	$8.10 imes 10^5$

-7 成时的主戴的上分加

表-4 境界断面力

		正曲げ最大	負曲げ最大		
モーメント	(M1)	$35381 \ (kN \cdot m)$	4656 $(kN \cdot m)$		
せん断力	(S1)	-1460 (kN)	-2286 (kN)		
軸力	(N1)	304 (kN)	304 (kN)		
モーメント	(M2)	$-17479 \ (kN \cdot m)$	-48316 (kN·m)		
せん断力	(S2)	-6724 (kN)	-6081 (kN)		
軸力	(N2)	304 (kN)	304 (kN)		

図-9 スタッド配置の見直し(下フランジ)

図-8 スタッドに生じるせん断力(下フランジ)

図-10 配置見直し後のせん断力(下フランジ)

(5) スタッド配置の見直し

前項までで示したスタッドのせん断力分布に対して、 その分布を平滑化することを目的として、スタッドに 生じるせん断力が許容値を大きく上回る格子配置の角 部については、スタッド設けない(間引きをする)配 置への見直しを検討した。角部のスタッドを1本間引 くことでも、ピーク値の低減は確認できたが、許容せ ん断力以下に収めるために、間引き本数を増やし、解 析をトライアルした結果、下フランジのスタッドの最 終的な配置は図-9に示すものとなった。また、角部の 間引きと合わせて配置間隔に余裕のあった、中間セル についてはスタッド本数を増加しており、その効果も 合わせ図-9の配置によるスタッドのせん断力分布は、 図-10に示すものとなった。

図-10から、対策として講じた、角部スタッドの間引 きについては、その効果があり、図-8と比べてせん断 力の分布が平滑化され、中間セルのスタッド増の効果 と合わせて、発生せん断力が許容値以下であることが 確認できる。下フランジ以外の部位についても、同様 の対策を講じることで、スタッド1本あたりの発生せ ん断力を、道路橋示方書中の許容値以下に押さえるこ とができた。本橋接合部のスタッド配置の写真を図-11、

図-11 間引き配置されたスタッド(下フランジ)

図-12に示す。

4. おわりに

本橋上部工は鋼箱桁と、PRC箱桁が接合部を介して連 結される構造である。その接合部構造は中詰コンクリ ート方式とし、ずれ止めにはスタッドを採用した。

接合部の設計において、スタッドを格子配置した場合、スタッド1本あたりの発生せん断力に大きな偏り があることがFEM解析にて確認された。

その対処方法として、本橋では、格子配置の隅角部 にあたるスタッドを間引くことでFEM解析上での発生せ ん断力の分布を平滑化することができた。

最適な接合部構造を追求する場合、ずれ止めの方向 性および経済性で有利と考えられるスタッドをずれ止 めとして選択するケースは少なくないと思われる。

本論文が、今後の「鋼・PC複合上部工の複合部構造 の設計」の一助となれば、幸いである。

参考文献

 日本道路協会:道路橋示方書・同解説Ⅱ鋼橋編, pp.331-339, 2002.

図-12 間引き配置されたスタッド(ウェブ)

CONBINED STRUCTURE OF SUPER STRUCTURE DESIGNED BY STEEL - PRESTRESSED CONCRETE IN THE ROAD BRIDGES

Osamu SANADA

Abumigawa Bridge on JOBAN Expressway is the east of Miyagi Pref in Japan, and has max span 94.5m and has length 196.9m, three out-waterway crosses this bridge. On basic design, we selected combined structure 3-span continuous steel box girder–simple prestressed reinforced concrete box girder (selected type) by economic alternative.

In this type, we are able to use the effect of counter-weight by concrete member at side span, and use the effect of controlling negative reaction on abutments, and select the constructive technique filled concrete in the junction struction of steel-reinforced concrete member. On this report, I report some creativity working about the junction structure of steel-prestressed concrete on detailed design.