(19) 複合ラーメン橋のコンクリート充填鋼殻 剛結部における水平交番載荷実験

長山 秀昭¹・中西 克佳²・半浦 剛³・勝侯 征也⁴・長坂 秀一⁵ 江本 賢治⁶・佐藤 靖彦⁷・上田 多門⁸

¹正会員 JFE技研㈱土木・建築研究部 (〒210-0855 川崎市川崎区南渡田町1番1号) E-mail: h-nagayama@jfe-rd.co.jp ²正会員 JFE技研㈱土木・建築研究部 (〒210-0855 川崎市川崎区南渡田町1番1号) E-mail: ka-nakanishi@jfe-rd.co.jp 3正会員 和光技研㈱ 地域開発部 (〒064-8507 札幌市中央区宮の森3条1丁目3-15) E-mail: han-ura@wako-giken.co.jp 4正会員 和光技研㈱(〒064-8507 札幌市中央区宮の森3条1丁目3-15) E-mail: : s.katsumata@wako-giken.co.jp 5非会員 和光技研(㈱ 地域開発部(〒064-8507 札幌市中央区宮の森3条1丁目3-15) E-mail: s.nagasaka@wako-giken.co.jp 6非会員 北海道大学 大学院工学研究科 (〒060-8628 札幌市北区北13条西8丁目) E-mail: emoto@eng.hokudai.ac.jp 7正会員 北海道大学助教授 (〒060-8628 札幌市北区北13条西8丁目) 大学院工学研究科 E-mail: ysato@eng.hokudai.ac.jp 8正会員 北海道大学教授 大学院工学研究科 (〒060-8628 札幌市北区北13条西8丁目) E-mail: ueda@eng.hokudai.ac.jp

近年,合理的かつ経済的である上下部剛結型の複合ラーメン橋が注目されている.本研究では,鋼床版 を用いた複合ラーメン橋における新しいタイプの剛結部構造の力学的特性を把握するため,縮尺約1/2モ デルの水平交番載荷実験を行った.その結果,剛結部の荷重伝達機構ならびに十分な耐荷力を有すること を確認して,設計法確立のための基礎資料を得るとともに,3次元有限要素解析による比較検証のための シミュレーションデータとしている.

Key Words : composite rigid frame bridge, rigid connection, concrete filled steel shell

1. はじめに

架橋条件により桁高制限を受ける都市部の中小河川の 橋梁では、合成桁、あるいは合成床版桁の単純桁方式が 採用される例が多い.しかし、軟弱地盤で支持層が深い 場所では、長尺の基礎杭を必要とするため、経済性、耐 震性を考慮すると、上部工の重量を可能な限り小さくし、 橋脚、基礎杭などの下部工費を軽減できる構造が望まれ る.これらの要求に応える構造形式として、上下部一体 型の複合ラーメン形式の橋梁が注目されている^{1,2}.

筆者らは、上部工重量を小さくできる鋼床版桁と橋台 とを剛結した複合ラーメン橋に着目し、鋼桁の断面力を 橋台に伝達する構造として、図-1に示す簡易な剛結部 構造について実験・解析的検討を行っている³.本構造 は、鋼桁をコンクリート充填鋼設構造の橋台躯体に埋込 み、剛結することにより桁高を小さくし、さらにコンク リート充填鋼管構造の基礎杭を橋台下部から貫入して一 体化することにより耐震性を高めるものである.

本研究では、この構造を実橋に適用することを想定し て、荷重伝達機構の把握、設計荷重に対する安全性の検 証、および設計法確立のための基礎資料を得ることを目 的として、水平交番載荷実験を実施し、FEM解析によ るシミュレーションデータとしている.

本文は、実橋の剛結部構造を模擬した模型供試体を用いて実施した水平交番載荷実験の結果について報告するものである.

2. コンクリート充填鋼殻の設計

コンクリート充填鋼殻構造の標準的な設計手法は 確立されていない.したがって,近似する適切なモ デルから既存の設計手法を用い断面寸法などを初期 設計したうえで,その構造の妥当性の確認を行う必 要がある.そこで,鋼管あるいはH形鋼などの形鋼 をコンクリート断面内に配置したSRC橋脚⁴⁾を参考 に,図-2の標準断面を設定した.そして,解析・実 験結果により,構造の妥当性の検証を行い,今後の 設計手法を提案する基礎資料とすることとした.

(1) 主桁部の設計

上部工設計より決定される鋼床版桁断面を鋼殻内 に埋め込み,前面板,背面板,ダイヤフラムと溶接 する.

(2) 前面板,および背面板の設計

- ①立体フレーム計算より得られる剛結部に発生する断面力を用い、鋼材を鉄筋と見なし RC 部材として設計(設計荷重時)
- ②施工時フレッシュコンクリート側圧の最大値を 用い、垂直・水平リブにより固定された4辺固 定板として設計(仮設時)
- ③コンクリートとの付着力増加を期待して, 垂直 リブは, 孔あき鋼板ジベル (PBL) とする.

(3) 底板の設計

- ①杭頭結合部に発生する水平支圧応力の合力が底板に引張力として作用するとみなし、断面を設計(設計荷重時)
- ②フレッシュコンクリートの鉛直圧に対し、縦・ 横リブにより固定された4辺固定板として設計 (仮設時)

(4) ダイヤフラムの設計

主桁からの作用力を確実に伝達することを考慮し、 ダイヤフラムを各主桁直下に設置する.これは、鋼 床版桁主桁からの荷重伝達を考慮し、主桁ウェブ断 面と同等以上の板厚とする.

3. 水平交番載荷実験

(1) 供試体の緒元

図-3 には、供試体の概要図を示す.供試体は、 実構造物の約 1/2 縮尺モデルとし、剛結部の荷重伝 達機構を確認するために、主桁、橋台および杭を含 むL型形状の供試体としている. 鋼殻(1500L× 1000W×1500H),鋼床版主桁、リブ、ダイヤフラ ム等の剛結部の主要部材は、1/2 縮尺としている. 鋼管杭(φ 406.4、板厚 40.5mm)は、杭径を 1/2 縮 尺し、頭部はずれ止め 2 段配置としている.ただし、 板厚は、実際より厚肉とし塑性化しないようにした.

(2) 実験ケース

図-2 剛結部構造の標準断面(寸法単位:mm)

表−1 実験ケース					
	鉛直載荷	水平載荷			
ケースA	軸力なし	正負交番載荷			
ケースB	一定軸力を載荷	正負交番載荷			

実験ケースは,表-1の2ケースとする.ケース Aは,軸力なしの状態で,水平交番載荷する.さら に,終局状態を把握するため,破壊に至るまで載荷 する.ケースBは,設計荷重(死荷重)に相当する 軸力 200kN を加えた状態で,水平交番載荷して設 計法の妥当性を確認する.さらに,終局状態の把握 のため,破壊に至るまで載荷する.

(3) 実験方法

a) 載荷装置

図-4には、載荷装置の概要を示す.載荷実験として、剛結部構造を上下逆にして、軸力(200kN)を加えた状態、または軸力のない状態で、水平交番載荷を行う.載荷は、鉛直ジャッキと水平ジャッキの2台を用いて行う.荷重の符号はジャッキの押し側を正、引き側を負とする.水平荷重は、図中、左側から右側載荷がジャッキ押し側で正荷重である.鉛直荷重は、図中、下向きがジャッキ押し側で正荷重である.

図-4 載荷装置の概要(寸法単位:mm)

図-3 供試体 (寸法単位:mm)

b) 剛結部の設計荷重に相当する荷重

立体フレーム計算から求められる剛結部の設計荷 重に相当する載荷荷重を,表-2に示す.実物を縮尺 1/2にモデル化するにあたって,応力,ひずみを等 価にするために,鉛直力と水平力は実物の1/4,モ ーメントは1/8になるように設定した. 表-2 立体フレーム計算から求められる剛結部の設計荷重 (縮尺 1/2 模型に換算)

荷重ケース	鉛直力 N(kN)	水平力 P(kN)	モーメント M(kN・m)	備考
①常時	152.3	50.0	75.0	温度荷重考慮
②レベル1地震時	159.2	15.0	20.9	
③レベル2地震時	207.8	170.0	446.8	主桁下フランジ 上面の断面力

c) 杭頭結合部の耐力に相当する荷重

道示に示される杭頭結合(A法)の場合の曲げ, せん断力作用時の応力照査式(図-5参照)を,式 (1)に示す.

$$\sigma_{ch} = \frac{P}{DL} + \frac{6M}{DL^2} \le \sigma_{ca}$$
(1)

ここに、σ_{ch}およびσ_{ca}はコンクリートの支圧応力 および許容支圧応力、Pは水平力、Mは曲げモーメ ント、Dは杭径(=0.4064m)、Lは埋込み長さ (=0.45m)である.

さらに, M/P=Aとすると, 式(1)より, 曲げモ ーメントは式(2)で与えられる.

$$M = \frac{\sigma_{ch} \cdot D \cdot L^2}{L/A + 6}$$
(2)

式(2)の支圧応力として、常時および地震時の許 容支圧応力を、設計基準強度 σ_{ck} (=24N/mm²) を 用いて、それぞれ以下のように設定する.

常時 : $\sigma_{ch} = \sigma_{ca} = 0.3 \sigma_{ck} = 7.2 \text{ N/mm}^2$ レベル1地震時: $\sigma_{ch} = \sigma_{ca} = 0.45 \sigma_{ck} = 10.8 \text{ N/mm}^2$ レベル2地震時: $\sigma_{ch} = 1.0 \sigma_{ck} = 24 \text{ N/mm}^2$

また、M/P=1.5m (図-4 参照) とすると、曲げ 耐力に相当する水平力は、以下のようになる. 常時 :M_a=94.1kN·m, P_a=62.7kN レベル1地震時:M_a'=141.1kN·m, P_a'=94.1kN レベル2地震時:M_u=313.5kN·m, P_u=209.0 kN

d) 載荷ステップ

図-6 には、載荷ステップの模式図を示す.載荷 する水平荷重は、初期載荷として常時荷重±50kNを 3 サイクル、次に杭頭結合部の常時許容曲げ耐力相 当荷重 P_a =±62.7kNを 3 サイクル載荷する.この時 の発生変位を δ_a とし、以降変位制御で実施する. 変位制御による載荷は、±2 δ_a 、±3 δ_a ・・・と 1 δ_a ずつ変位を大きくし1ステップ当たり3サイクルの 交番載荷を荷重 170kN(レベル2地震時の設計荷 重)を超えるまで実施する.それ以降は1ステップ 当たり1サイクルとし、終局状態に至るまで水平交 番載荷を行う.

e) 使用材料の機械的性質

使用した鋼材,およびコンクリートの機械的性質 を表-3,および表-4 に示す.コンクリートは,呼 び強度 24N/mm²の早強コンクリートを用いて,各 供試体について実験前後の2回実施した.

4. 実験結果および考察

(1) 剛結部の全体的な挙動

剛結部の全体的挙動として、載荷点位置の水平荷 重-水平変位曲線を図-7 に示す.実験ケースA, Bともに、杭頭結合部の許容曲げモーメント相当荷 重 P_a (=62.7kN)時の変位 δ_a (=±3mm)を基準変 位として、±2 δ_a 、±3 δ_a 、・・・、±10 δ_a の載荷ル ープまで δ_a の整数倍で交番載荷した.次いで +12 δ_a の変位を与えた後,終局状態を把握するため, 実構造における荷重作用方向と一致させることとし, ジャッキ引き側に最大荷重(載荷装置の限界荷重) まで単調増加で載荷した. 図-7 より,最大荷重 (685 kN)は、レベル2地震荷重170kNの4倍以上, またレベル2地震耐力209kNの3倍以上であり,剛 結部は充分な耐力を保有しておることが分かる.

また、ケースA(軸力無し)とケースB(軸力有 り)とは、初期変位、最大荷重に達する水平変位、 および最大荷重除荷後の残留変位が異なるものの、 +12 δ_a までの載荷ループ形状はほぼ同等である.

図-5曲げ、せん断作用時の耐荷モデル

≢_?	細材の機械的性質	迉
রহ−১	- 地町小川 ひノ 代金 仲以 ロッパート 目	=

部材	規格	実測 板厚 (mm)	降伏強度 (N/mm ²)	引張強度 (N/mm ²)	ヤング 係数 (N/mm ²)	ポアソン 比
前面版・背面版・ ダイアフラム・底板	SPA-H	4.49	371.7	504.7	191968	0.26
主桁ウェブ	SM490A	8.73	377.7	547.4	199992	0.28
デッキプレート	SM490A	11.65	368.9	554.7	196571	0.28
主桁下フランジ	SM490A	31.97	321.0	511.9	210103	0.28
鋼管	STKM13A	40.20	333.7	495.8	203489	0.29

表−4 コンクリートの機械的性質

/#=+/★	材齢	圧縮強度	引張強度	ヤング係数	ポアソン比
供訊件	(日)	(N/mm^2)	(N/mm^2)	(kN/mm^2)	
А	7(実験前)	22.7	2	23.3	0.21
	7(実験後)	23.3	1	1	—
в	6(実験前)	19.6	I	19.1	0.2
	7(実験後)	21.9	1.9	20.3	0.19

実験ケースAを例にすると、全体的な挙動は以下 のとおりである. $\pm 2\delta_a$ (100kN) までは外観に変 状が認められず,弾性的挙動を示している.その後, +3δ,の載荷ステップで初めて、底板とコンクリー トとの間に隙間が発生した.そして、+5δ。(220 kN)の載荷ステップにおいて、鋼管とコンクリー トとの間に肌離れが発生した.また、+7δ。(275 kN)の載荷ステップでコンクリート下面に割裂が 観察され、-7δ。の載荷ステップで側面コンクリー トにも前面板主桁位置から背面板水平リブ位置に繋 がるひび割れが見留められた. さらに、+8δ。 (300kN)の載荷ステップで、主桁を固定している ベースプレートと剛結部との間の位置において主桁 下フランジが引張降伏し、-9δ。(340kN)で主桁下 フランジが圧縮降伏した.その後,+12δ。の変位を 与えた後,逆方向に単調載荷する過程(約 520kN) でコンクリート下面が局所的に圧壊した(写真-1).

図-8 には、鋼管-コンクリート間の相対軸方向 変位関係を示す.図-8 より、荷重載荷方向の対極 に設置した DISP-NX-F1 と DISP-NX-B1 とが正負逆 のほぼ同量の変位であり、かつ履歴ループの中心が 0 点であることから、鋼管は、コンクリートから

図-8 鋼管とコンクリート間の相対軸方向変位

写真-1 コンクリート下面の状況(試験終了時)

抜け出していないことが伺える(写真-1).

(2) 剛結部の構成部材のひずみ

ケースA(軸力無し)について,剛結部の構成部 材のひずみは以下のとおりである.

a) 主桁のひずみ

図-9 には, 主桁のひずみ (剛結部近傍: G2-LF-1, 剛結部: G2-LF-2) を示す. 図-7 において, +12δ_a 以後に非線形性が現れる主な原因は, 主桁が降伏す ることによる. すなわち, 主桁は, レベル2地震時 の設計荷重 (170kN) まで弾性ひずみの範囲にあり, 荷重 300kN程度で剛結部近傍 (G2-LF-1) が引張降 伏に達し, その後, 圧縮降伏している.

図-9 主桁下フランジのひずみ

b) 各種鋼板のひずみ

図-10~図-14 には、載荷点の水平荷重と各種鋼板ひずみの計測点のうちひずみ発生量が 1,2 位の ひずみとの関係を示す.常時、および地震時の設計 荷重レベルに対して、弾性ひずみの範囲にあること が分かる.また、図-10、および図-11 より、前面 板、背面板ともに、荷重に対してひずみが正負交番 しており、圧縮・引張鋼材として機能していること が分かる.

図-12 は、ダイヤフラムの 45° 方向のひずみに着 目して、荷重との関係を示したものである.常時、 および地震時の設計荷重レベルに対して、弾性ひず みの範囲にある.また、水平荷重の正負交番載荷に 対して、ダイヤフラムは圧縮・引張応力状態にあり、 せん断パネルとして機能していることが分かる.

図-13 は、デッキプレートの荷重-ひずみ関係を示したものである.常時、および地震時の設計荷重レベルに対して、弾性ひずみの範囲にある.また、デッキプレートの引張ひずみに関して、鋼殻の外に設置した DP-RG2-1 と鋼殻の中央に設置した DP-RG2-3 とは、ほぼ同等の値となっている.これは、デッキプレートと鋼殻とをレ型開先の完全溶込み溶接としたことにより、引張応力に対し完全に定着されたためと考えられる.

図-14 には、底板の荷重-ひずみ関係を示す.常時、および地震時の設計荷重レベルに対して、弾性 ひずみの範囲にあることが分かる.また、底板は、 水平荷重に対し荷重方向のひずみは圧縮、荷重逆方 向には引張で挙動しており、圧縮・引張部材として 機能していると言える.

図-12 ダイヤフラムの荷重--ひずみ関係

c) コンクリートのひずみ

図-15 には、コンクリート下面のひずみを、コン クリートの許容ひずみ(圧縮強度の 1/3 まで弾性範 囲と仮定して算出した値)と比較して示す.図-15 より、コンクリート下面のひずみは、常時、および レベル1地震時の設計荷重レベルに対して許容ひず み以下、レベル2地震時の設計荷重レベルに対して 許容ひずみ以上となっている.しかしながら、外観 上、コンクリート下面にひび割れが発生していない ことから、コンクリートは応力伝達部材として健全 であると考えられる.なお,コンクリート下面には, 載荷に伴う圧縮ひずみが残留しているが設計荷重レ ベルでは小さいことが分かる.

次に、図-16 に、鋼管周辺のコンクリートの支圧 ひずみ(鋼管表面から約 70mm 離れた位置にモールト ゲージを設置)を示す.鋼管は、鋼殻内部に 450mm 埋め込まれており、頭部のずれ止めは、底板から 250mm、350mm の位置に配置されている.コンク リートの支圧ひずみは、コンクリート下面位置にお いて最も大きく、深さとともに漸減し、表面から 225mm 位置より上方(杭頭方向)において、殆ど 発生していない.ひび割れについては、設計荷重 (常時 50kN、レベル2 地震時 170kN)レベルに対 しても発生しておらず、終局時、コンクリート下面 において支圧と直交する方向にひび割れが観察され た.これより、終局状態においては、コンクリート 表面付近に、支圧と同時に大きな引張が生じること が分かる(写真-1).

5. 結論

実橋の剛結部構造の 1/2 模型供試体を用いて水平 交番載荷実験を行った.得られた主な結論を,以下 にまとめる.

- ①SRC構造として初期設計した断面に対して、水 平交番載荷実験を行った結果、実験ケースA、B の終局耐力は 685kN 以上あり、レベル2地震時 耐力(209kN)の3倍以上あることを確認した。
- ②主桁から基礎杭への応力伝達機構について、杭頭 部に作用する荷重は、デッキプレート、前面板、 背面板、および底板からなる鋼殻内に設置された ダイヤフラムと充填コンクリートとにより鋼殻部 に伝達され、鋼殻の前面板、および背面板は圧 縮・引張材となって応力伝達することが確認され た.
- ③杭頭結合部の耐力は、コンクリートの設計基準強 度 $\sigma_{ck}=24N/mm^2$ に対して、コンクリートの支圧強 度 $\sigma_{ch}=0.3\sigma_{ck}$ (常時許容)、 $\sigma_{ch}=0.45\sigma_{ck}$ (レベ ル1地震時)、および $\sigma_{ch}=1.0\sigma_{ck}$ (レベル2地震 時)と仮定し、コンクリートの支圧抵抗により求 めることが可能である.
- ④載荷装置のシステムとしての戴荷能力の限界である最大荷重700kNに達したため、供試体全体系のピーク荷重を確認することができなかったものの、ピーク荷重に至る前に主桁下フランジの降伏ならびにコンクリート下面の局所的圧壊が観察された.このことから、荷重伝達機構に関する基礎的知見として、コンクリート充填鋼殻剛結部の終局耐力は、充填コンクリートの破壊、鋼殻部材の

降伏, 主桁の降伏, 鋼管の降伏のうち最も小さい 強度で決定されることを確認した. また, 充填コ ンクリートの破壊および荷重伝達に関しては, 鋼 殻によりコンクリートが囲まれ, 拘束されること による「鋼殻の密閉効果」と補剛リブを利用した 孔あき鋼板ジベル(PBL)による「PBL のずれ止 め効果」の2つのずれ止め機構の影響を受けるこ とが想定される.

今後、コンクリートの圧縮強度、および鋼殻部材 の縦横比等が耐荷機構に及ぼす影響について、載荷 実験により調査するとともに、3次元有限要素解析 による数値解析の実施によって、応力伝達機構を明 確化し、設計法を確立していきたい.

謝辞:本研究を遂行するにあたり、ご指導並びに検 討の機会を与えて頂いた北海道札幌市建設局土木部 の関係各位に記して謝意を表します.

参考文献

- 1)道下泰博,本間宏二,平田尚,櫻井信彰,渡部弘明,藤川敬 人:インテグラル複合ラーメン橋(西浜陸橋)の設計 と施工,橋梁と基礎,Vol.35,No.2,pp.11-18,2001.
- 2)中村俊一,田中寛康: 圧延 H 形鋼を用いた複合橋梁の提案,鋼構造年次論文報告集,第9号, pp.17-24,2001.
- 3)江本賢治ほか:複合ラーメン橋のコンクリート充填鋼 殻剛結部における3次元有限要素解析,第6回複合構 造の活用に関するシンポジウム,2005.(投稿中)
- 4)阪神高速道路公団:合成柱(充てん方式)を有する鋼 製橋脚の設計・施工指針(案),昭和61年3月

EXPERIMENTAL STUDY ON RIGID CONNECTION USING CONCRETE FILLED STEEL SHELL UNDER HORIZONTAL CYCLIC LOADINGS

Hideaki NAGAYAMA, Katsuyoshi NAKANISHI, Takeshi HAN-URA, Seiya KATSUMATA, Shuichi NAGASAKA, Kenji EMOTO, Yasuhiko SATO and Tamon UEDA

Reasonable and economical composite rigid frame bridges connecting the steel girder and pier have lately attracted attention. In this study, 1/2-scaled model experiments under horizontal cyclic loadings were conducted in order to investigate the structural characteristics of new type rigid connection for the rigid frame bridge with steel deck plate girders and steel pipe pile foundations. As a result, it is confirmed that the proposed rigid connection has sufficient load carrying capacity. Furthermore, the fundamental data was obtained to compare with 3-D FEM analysis simulation for the purpose of establishment of the design method of this connection.