# 遠心力模型実験に適用可能な 小型水分量センサーの開発

西本 壮志<sup>1</sup>·青木 稔<sup>1,2\*</sup>

<sup>1</sup>(一財)電力中央研究所 サステナブルシステム研究本部 (〒270-1194 千葉県我孫子市我孫子1646) <sup>2</sup>(株)ジオデザイン 技術部 (〒108-0023 東京都港区芝浦3-20-6 芝浦MYビル3F) \*E-mail: aoki@geodesign.co.jp

Key Words : centrifugal model test, moisture sensor, differential signal, high level radioactive waste disposal

# 1. はじめに

高レベル放射性廃棄物地層処分場の周辺(ニアフィー ルド)において,廃棄体周辺の水分量(飽和度)の分布 は,緩衝材の性能に大きな影響を与えることからその状 態を把握することは重要である.ニアフィールドにおけ る数百年にわたる再冠水挙動の評価は,最終的には数値 シミュレーションを活用することになるが,その妥当性 確認のために,遠心場の相似則に基づき,現象(時間) を加速した結果が得られる遠心力模型実験が実施されて いる<sup>b</sup>.既往の遠心力模型実験と数値解析の比較を行っ た研究<sup>a</sup>において,廃棄体周辺の高透水帯の有無によっ てオーバーパックの移動の経時変化が大きく異なること が明らかとなっている.また,岩盤中を流れる間隙水の 移動を把握することにより解析結果の妥当性確認に資す ることにもなる.

地盤材料中の水分量(飽和度)を計測するセンサーと して土壌水分計が一般的である.一方,遠心力模型実験 においては小寸法の縮尺模型を用いるため,模型中の水 分量の分布を把握するためのセンサーには小型かつ,そ の感度範囲が狭いものが求められる.一般的な土壌水分 計は寸法の制約がある縮尺模型実験にはサイズが大きく, また,感度範囲が広くなるためその適用が困難である. このため,遠心場で使用可能な小寸法模型に設置できる センサーが必要となる.加えて,沿岸部処分を想定した 場合,塩水環境下における水分量の測定が可能なセンサ ーも必要である.以上から本報では,遠心力模型実験で 使用可能な小型の水位/水分量センサーを開発してきた 内容を報告し,その成果と課題について述べる.

## 2. 水位センサーの開発

遠心力載荷実験において小寸法模型の水分量を計測す ることを目標に、まず、試料内の水位の計測が可能なセ ンサー(以降、水位センサー)を開発した(図-1). 水位センサーは2枚のステンレス板の電極(幅5mm×長 さ10mm)からなる簡易な仕組みで、岩盤などの試料中 の間隙水が2つの電極に接触すると通電し、出力が0から 6Vに上昇する.出力確認試験の結果を図-2に示す.モ ールドに詰めたケイ砂中に水位センサーを設置し、ケイ 砂を徐々に飽和させ、飽和した時点で別途用意したコン



トローラを調整し6Vが安定して出力される最低の感度 (抵抗値)に設定した.これにより試料(模型)内の水 位の把握が可能となった.

適用事例として、周辺岩盤を含めた廃棄体(オーバー パック)周辺の1/50縮尺のニアフィールド模型を用いた 遠心力載荷実験において、水位センサーが用いられてい る<sup>3,4</sup>. ここでは文献3)の結果について例として示す. 図 -3に示したニアフィールド模型には水位センサーが岩 盤、埋戻し材中に4箇所設置されている(WG1~4). 実験では、有効応力4MPa(深度400m相当)、遠心加速 度50G場の条件下で、模型下面から間隙水を注水してい る. 水位センサーの出力結果を図-4に示す. 水位セン サーは模型の下部から約50~80mm間隔で設置されてお り、模型下面からの注水により、下方のセンサーから順 に0から6Vに変化していることが分かる. このセンサー の出力時刻と模型下面からの距離により、模型内の間隙 水の浸潤速度(不飽和時の間隙水の移動速度)が求めら れる(図-5).

#### 3. 2端子法による水分量センサーの開発

水位センサーは通電状況により0V/6V出力であるため、実際には徐々に変化する試料中の水分量(飽和度) が不明である.このため、次に、試料中の水分量が計測 可能となるようなセンサーの開発に取り組んだ.

開発した水分量センサー(システム)の概略を図-6, 電極の写真を図-7に示す.水分量センサーのシステム は図-6に示すように、ファンクションジェネレーター で10kHz,正弦波,±5Vppに調整した交流電流を発生さ せる. 電極は2つ(2端子法)であり(図-7), 電極を 試料内部に設置して印加する.印加により回路に電流が 流れ、その電流量を抵抗に流して、そこで発生した電圧 を直流電圧に整流、その信号の違いが水分量の違いであ り、これをデータロガーで計測する.動作確認試験の結 果を図-8に示す.動作確認試験では、高さ25mm、直径 50mmの緩衝材供試体(クニゲルV1・70%+ケイ砂・ 30%, 締固め密度1.6Mg/m<sup>3</sup>, 初期含水比約10%) を鋼製 容器に封入、供試体下部から100kPaで純水を注入し、電 圧の経時変化を計測した. 出力電圧と飽和度の関係は, 予め飽和度(40~95%)を調整した緩衝材試料を準備し、 それを計測することで電圧と飽和度の関係を整理し求め た. その結果, 試験開始初期において下方に設置した電 極①の電圧(飽和度)の増加が計測され、かつ順に、電 極②,③についてもほぼ等時間間隔(5時間)で同様の 電圧増加が確認された. 試験終了時において, 電極① (供試体下端面から6.25mmの位置)における飽和度は 約96%であった.

適用事例として,高さ1mの長尺の緩衝材に対して間 隙水を10年程度継続して注入している「一次元浸潤速度 取得試験」(図-9,以降,1G場試験)<sup>3,9</sup>を対象に,そ の縮尺模型を用いた遠心力載荷実験において,水分量セ ンサーが用いられている<sup>3,9</sup>.この遠心力模型実験では, 実物の1G場試験に対し,遠心力(20,30,40G)と縮尺 (1/20,1/30,1/40)を変えて比較する,モデリング・オ ブ・プロトタイプとモデリング・オブ・モデルズが実施さ れ,緩衝材中の浸潤速度,飽和度の分布が比較されてい る.例として,30G場試験における縮尺模型を図-10に





示す. lmの長尺の1G場試験の緩衝材に対し、その1/30寸 法の高さ33.34mmの模型に5個の水分量センサーが設置 されている(図-10). 1/20, 1/40模型でも同様に, 6個, 3個の水分量センサーが設置されている. 1G場試験と同 様に、遠心力模型実験でも下面から緩衝材に間隙水が注 入され、その結果、模型下面からの距離に応じて水分量 センサーで飽和度の上昇が計測された(図-11).また, 1G場試験と遠心場試験の浸潤フロント(初期飽和度か



図-6 水分量センサー(2端子法)のシステム概略.

図-7 水分量センサーの電極写真.



図-8 水分量センサー(2端子法)の出力電圧から求 まる供試体の飽和度の経時変化。

ら1%増加した位置と定義)を比較した結果を図-12に 示す. 1G場試験と遠心場試験で若干の差があるものの (遠心場試験の方が浸潤速度がやや遅い),水分量セン サーには誤差が5%程度あることを考慮すれば、1G場試 験と遠心場試験,遠心加速度が異なる遠心場試験同士で の間隙水の浸潤距離と浸潤時間の関係はほぼ同等の結果 が得られている. すなわち,,緩衝材中の水の浸潤に関 して, モデリング・オブ・プロトタイプとモデリング・オ ブ・モデルズが成立し、相似則が成立していると考えら れる9.



図-9 対象とする一次元浸潤速度取得試験の試験装 置および供試体.



図-10 1/30 縮尺の模型およびセンサー配置概略図.







## 4. 4端子法による水分量センサーの開発

2端子法による水分量センサーで遠心場における模型 中の水分量(飽和度)計測の適用性が確認された一方, 2端子法だと電極と材料間の接触状態の変化により出力 電圧に少なからず誤差が発生することや,ノイズ成分 を比較的多く計測するため,試験毎にキャリブレーシ ョンが必要であった.また,沿岸部処分場を想定した 際,処分場の間隙水(地下水)に海水成分が含まれる. この場合,海水の電気抵抗が純水と比較して極めて低 いことから,僅かな海水の浸潤で出力値が上限に達し てしまい,試料内部の水分量を正確に計測できないな どが考えられる.このため,電極2つが一組となり差動 信号として入出力を与える4端子(4極)法を採用し, あわせて静電容量が測定可能となるように水分量センサ ーの改良を行った.4端子法は測定対象物に電流を印加 する電極と検出する電極を分離することで,電極と対象 物の接触抵抗の影響を低減することができる計測手法で ある.このためノイズを低減でき,より正確な信号が計 測可能となる.

4端子法の概略を図-13に示す. 試料に対し, 図に示 すように4端子法計測用電極に波形発生装置(AWG.1) と計測器(Ch.1, 2)を接続し, O-O' 電極に電圧, 正弦 波電流を印加すると, その周波数に応じて生じた電圧を H' 電極で検出する. なお, O-O' 間に印加した電流の 大きさは100Ωのシャント抵抗(Reg.) により発生する 電圧として計測される.

動作確認試験には、次に示す試料を用いた.すなわち、 Na型ベントナイトと6号珪砂の混合土(混合割合7:3,乾 燥密度1.6Mg/m<sup>3</sup>、含水比7.52%)と、同じ材料に人工海 水を加え含水比18.9%とした2つの材料を締固めて供試体 を作製した.結果の例を図-14に示す.図-14(上)はNa 型ベントナイトと6号珪砂の混合土(以下,純水加水 土)に10kHzの正弦波電流を印加した時のH'およびO-O'間の電圧および電流である.図-14(下)は人工海水 を加水した混合土(以下,海水加水土)の結果である.



図-13 水分量センサー(4端子法)の概略図.



得られた電流,電圧の値からそれぞれ絶対値の平均値を 電流,電圧の実効値とした場合,電気抵抗値は純水混合 土で12513Ω,海水加水土で533Ωとなり,海水加水土の 方が2オーダー低い.また,電流波形に対して生じる電 圧の位相差θは,純水混合土で21.6°,海水加水土で 48.8°であった.この位相遅れの大きさから静電容量を 求め,予め含水比(飽和度)を調整した試料でキャリブ レーションを行うことにより,海水成分を含む状態でも 試料中の水分量の変化をとらえることが可能になると考 えられ,現在開発を継続している.

# 5. おわりに(まとめと課題)

本報では、高レベル放射性廃棄物処分場周辺の長期挙 動評価のために実施されている遠心力模型実験において、 その模型中の水分量を計測するための小型のセンサー開 発について述べた.

まず,2枚一組のステンレス板から成る水位センサー の開発を行った.ステレンス板の間に間隙水が到達し通 電による電圧を検出する簡易な仕組みであるため,キャ リブレーション不要で出力が明確であり,試料中の間隙 水の到達(水位の遷移)を容易に捉えることができた. 一方,水分量(飽和度)の変化は捉えられず,次に2端 子法による水分量センサーの開発を行った.

2端子法による水分量センサーは、ファンクションジ エネレーターで発生させた正弦波を電極に入力し、試料 内部の電流(電圧)の変化を計測する.これにより、試 料中の飽和度の変化を捉えることが可能となったが、電 極と試料の接触状況に影響を受けることや、ノイズ成分 を比較的多く計測するなどの課題があった.このため、 4端子法による水分量センサーの改良に着手した.

4端子法による水分量センサーは、測定対象の試料に 電流を印加する電極と、試料に流れる電流から生じる電 圧を検出する電極を分離する手法である.これにより、 電極と試料間の接触による電気抵抗の影響を低減するこ とができ、検出する水分量の誤差を減ずることができる. また、4端子法による水分量センサーは間隙水が純水/ 海水問わず計測できる可能性もあるため、利点も多い. 現在、特定の飽和度における動作確認の段階であり、開 発を継続している.今後、測定される正弦波を処理し電 気抵抗と静電容量を求め、これらの経時変化を表示する プログラムを作成予定である.また、一台の計測システ ムで複数の計測点を測定するための多チャンネル化も進 める予定である.これらの開発により、電気抵抗と静電 容量を多点同時に計測し、その値から水分量および塩分 濃度を推定する方法を検討している.

#### 参考文献

- Nishimoto,S., Sawada,M. and Okada,T. : New Rapid Evaluation for Long-Term Behavior in Deep Geological Repository by Geotechnical Centrifuge. Part 1: Test of Physical Modeling in Near Field Under Isotropic Stress-Constraint Conditions, *Rock Mech. Rock Eng.*, 49, pp.3323– 3341, 2016.
- 2) 原子力環境整備促進・資金管理センター,平成 28 年 度地層処分技術調査等事業 処分システム工学確証技 術開発報告書(第3分冊)人工バリアと周辺岩盤の長 期挙動評価手法の構築,2017.
- 3) 原子力環境整備促進・資金管理センター,平成 29 年 度高レベル放射性廃棄物等地層処分に関する技術開発 事業 処分システム工学確証技術開発報告書(第3分 冊)人工バリアと周辺岩盤の長期挙動評価手法の構築, 2018.
- 4) 西本壮志,高レベル放射性廃棄物処分場の処分孔坑道 を有する模型を用いた遠心力載荷実験に関する技術検 討,N19502,2020.
- 5) 日本原子力研究開発機構,原子力環境整備促進・資金 管理センター,平成 30 年度高レベル放射性廃棄物等 地層処分に関する技術開発事業 ニアフィールド評価 確証技術開発報告書,2019.
- 6) 日本原子力研究開発機構,原子力環境整備促進・資金 管理センター,平成31年度高レベル放射性廃棄物等地 層処分に関する技術開発事業 ニアフィールド評価確 証技術開発報告書,2020.