精密写真測量によるアンコール遺跡バイヨン 中央塔における塔体・基壇の石積みの変位計測

中西 由起¹·小山 倫史^{1*}·橋本 涼太²·岩崎 好規³

¹関西大学社会安全学部(〒569-1098 大阪府高槻市白梅町7-1) ²京都大学大学院工学研究科都市社会工学専攻(〒615-8510 京都府京都市西京区京都大学桂) ³地域地盤環境研究所(〒540-0008 大阪市中央区大手前2-1-2 國民會館・住友生命ビル6F) *t-koyama@kansai-u.ac.jp

バイヨン寺院中央塔は高さ42mにおよぶ砂岩による組積造の塔状建築であり,突発的な落石が起るなど 塔の部分的崩壊の危険性が指摘され早急かつ恒久的な対策が求められている.中央塔の基壇は高さ約12m の盛土で,周囲は積み石擁壁構造であるが,降雨時には石積みの壁からの漏水が観察されている.1960 年代以前の目地は,モルタル充填されているが,現状では,新たな縦目地が発生し,基礎部の石には,亀 裂の発生・進展が見られる.これらの塔体および基壇の安定性に大きく影響を及ぼし,構造安定化に向け た修復・対策工法の検討のためには,変状の現状把握・変状要因の特定・変状メカニズムの解明が重要で ある.そこで,本研究では,石積みの挙動を正確に把握するため,精密写真測量を用いた計測を実施した.

Key Words : Bayon temple, Angkor remains, masonry structures, digital photogrammetry, displacemenet

1. はじめに

バイヨン寺院はカンボジアのクメール文明遺跡群の中 でもアンコール・ワットと双璧をなしその極点にある遺 構である(写真-1).また,バイヨン寺院はアンコール 王朝の最も繁栄した歴史の伝統文化の証であるとともに 現在のアンコール観光の中心であり,カンボジア政府に とって最も重要な遺跡の一つとなっている.しかし,バイ ヨン寺院はアンコール遺跡群の中でも最も劣化・崩壊の 危機に瀕した遺跡でもある.その上,現場での即応的な 建築技術が適用された建物が高密度に集積された遺跡で あることなどによって,その修復が技術的に最も困難な 状況にある¹⁾.

バイヨン中央塔は高さ 42m におよぶ砂岩による組積 造の塔状建築であり、その建設から現在にいたる数百年 間に様々な要因と作用によって劣化・変状が進み、現在 は突発的な落石が起るなど塔の部分的崩壊の危険性が指 摘され早急かつ恒久的な対策が求められている.また、 中央塔の基壇は高さ約 12mの盛土で、周囲は積み石擁 壁構造であるが、降雨時には石積みの壁からの漏水が観 察されている.1960 年代以前の目地は、モルタル充填 されているが、現状では、新たな縦目地(目地開き)が 発生し、基礎部の石材には、亀裂の発生・進展が見られ る(写真-2). これらの変状は塔体・基壇の安定性に大 きく影響を及ぼすと考えられ,基壇も含めた中央塔の構 造安定化に向けた修復・対策工法の検討のためには,変 状の現状把握・変状要因の特定・変状メカニズムの解明 が重要である.そこで,本研究では,石積みの挙動(亀 裂進展・目地開きに伴う石積みの動きなど)を正確に把 握するため,精密写真測量(単写真測量)を用いた計測 を実施した.本手法は,反射ターゲットを設置した石積 みを定期的に写真撮影し,その3次元座標を取得し, その変分分析により,開閉口方向のみならず,面内せん 断方向の動きを把握することが可能である.また,計測

写真-1 アンコール遺跡バイヨン寺院

写真-2 基壇部における石材の目地開き・亀裂

に外部からの電源を必要とせず,安価でターゲット設置 も容易であり,耐候性・耐久性に優れ,「誰でも簡易に 計測できる」という最大の特長がある.

単写真測量を用いた目地開き・亀裂開口幅の計 測に関する理論・方法^{2.3}

(1) 計測手順

単写真測量を用いた目地開き・亀裂開口幅の計測手順 を以下に示す.まず,図-1に示す反射ターゲットを基準 尺としてひび割れの両側に設置する.設置の際は,強固 な接着剤を用いる.遺跡での計測においては、計測終了 後に取り外すことが要請されているが、その場合でも溶 剤を用いて容易に取り外しができる. ターゲットは, 暗 い状況下(例えば、本研究においては副塔内部の亀裂の 計測)においても計測を可能とするためにカメラフラッ シュ光に対する乱反射を強めるためにガラスビーズを材 料として作成されている. ターゲットには、4点の円が 既知の間隔で印刷されており、これは基準尺としての役 割を果たす他、後述する射影変換にも用いられる. はじ めに、一方のターゲット上の4点の円の重心の二次元座 標を算出する. 任意の撮影位置から得られたデジタル画 像は、射影変換を用いて正対して撮影した画像に変換す る. したがって、撮影者は全く同じ場所から同じように 撮影することを強要されず,任意の場所から撮影が可能 である.次に、射影変換後の画像を用いて、両側のター ゲット上の円の重心の二次元座標を算出し、算出された 2つの円の重心間距離を用いて、ひび割れが開く方向と ずれる方向の変位を評価する.

(2) 単写真測量の基本原理^{4),5}

本手法の計測精度は、ターゲット上の円の重心の二次

図-1 反射ターゲット

図-2 明度分布の一例

元座標の読取精度に大きく依存している.すなわち,い かに正確に円の重心を検出するかが,本計測において重 要となっている.そのため,ガラスビーズで作製された ターゲットを計測箇所に設置した.ガラスビーズにより カメラフラッシュの入射光は強く反射され,この反射光 の強さの度合いを「明度」とよぶ.画像上の円の明度分 布の一例を図-2に示す.円の重心計算は,この明度分布 を用いて二値化処理の後に算出される.明度は1画素当 たり256段階で数値化されており,適当な閾値を定め (本研究では200とした),閾値以下の明度については ゼロとし,閾値以上の明度をもつ画素について明度を重 みとして以下の式(1)および式(2)により面積重心計算を 行う.

$$x = x_0 + a_x \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (q(i, j) \times x_{ij})}{\sum_{i=1}^{n} \sum_{j=1}^{m} q(i, j)}$$
(1)

$$y = y_0 + a_y \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (q(i, j) \times y_{ij})}{\sum_{i=1}^{n} \sum_{j=1}^{m} q(i, j)}$$
(2)

ここで, (x₀, y₀) は重心計算範囲の原点, (a_x a_y) はそれぞ れの画素サイズ, q(i,j) は画素(i,j) の明度である.

次に,射影変換により元画像を修正・変換する.射影 変換とは,図-3に示すようにある平面 L 上の点(x,y)が, 投影中心Oに関して,他の平面 L'上の点(x',y')として投 影されるような変換をいう ⁰.本計測手法においては,

「斜めから撮影された画像を正面から撮影した画像に変 換する」ことを指す.射影変換は、写真測量の基本原理 である共線条件に基礎をおく.共線条件とは、図-4 に 示すように、対象空間上の計測点とその画像上の点、及 びカメラの原点(レンズの中心)は一直線上に存在する という原理である.共線条件から以下の射影変換式(3) 及び式(4)が導出され、斜めから撮影された画像の画像 座標(x, y)が正対した位置から撮影した画像の画像座標 (x',y')に変換される.この2式には8個の未知係数が存 在しており、4点以上の基準点の画像座標を用いて最小 二乗法をあてはめることにより求められる.したがって、 ターゲットには4点の円を基準点として印刷されている. 最後に、ひび割れの両側のターゲットの円の重心間距離 を計算し、その距離の変化により、ひび割れ幅の変位を 評価する.

$$x' = \frac{b_1 x + b_2 y + b_3}{b_7 x + b_8 y + 1}$$
(3)

$$y' = \frac{b_4 x + b_5 y + b_6}{b_7 x + b_8 y + 1} \tag{4}$$

3. バイヨン寺院中央塔における目地開き・亀裂開 ロ幅の計測結果

図-5にターゲットの設置位置を示す.石材の目地開き や亀裂の進展など、特に変状が著しいと見られる北テラ ス西側の基壇(ターゲット名:B1,B2,B3)、南テラス 西側の基壇(BSW1,BSW2)、南テラス東側の基壇 (BSE1,BSE2)、主塔の南西側(SW1,SW2,SW3)およ び北西側(NW)、北西側の副塔(SubT1,SubT2)にお いて計13地点に写真測量用の反射ターゲットを設置した. なお、ターゲットの設置に当たっては石積み擁壁に接着

剤で貼るのみでよく、穴をあけるなど石材を損傷するこ となく容易に設置できる. 「石材を損傷しない」という ことは、本遺跡で計測するに当たり強く要請された事項 である. 写真の撮影は、2014年8月29日より開始し、月 に1回あるいは2回ずつ実施している. また、理論上は1 枚の写真で重心間距離は計算できるが、計測精度向上の ため、一回の撮影で各ターゲット5枚ずつ連続して撮影 する.

図-6に各計測地点におけるターゲット間距離(初期 値)および5回計測したときの標準偏差を示す.標準偏 差はいずれの地点においても数十mmのターゲット間距 離に対して0.1mm以下であり,比較的よい精度で計測が できていることを示す.ただし,理論上,奥行き方向 (Z方向)の成分は考慮していないため,可能な限り正

(Z方向)の成分は考慮していないため、可能な限り正 面から写真撮影を行うことが望ましく、奥行き方向の段 差がやや大きい箇所ややや見上げる角度で撮影した場合、 精度がやや落ちる傾向が見られる(例えば、ターゲット SubT1やBSW2など).

図-7~図-9に2015年6月30日までの各計測地点におけ るターゲット間距離の変動幅を示す(図-7に基壇に設置 したターゲットB1, B2, B3, BSW1, BSW2, BSE1,

図-5 バイヨン寺院中央塔におけるターゲット設置位置(図の上が北を示す)

図-6 目地開き・開口幅の初期値および標準偏差

BSE2について、図-8に主塔の上部に設置したターゲットSW1, SW2, SW3, NWについて、図-9に副塔内部に設置したターゲットSubT1, SubT2についてそれぞれ示す).ただし、本図では目地が開口する方向を正とした.本図より、ほぼ全てのターゲットで、目地および亀裂は、開口あるいは閉口を周期的に繰り返しており、その変動幅も概ね1.0mm以下である.また、開口あるいは閉口が進展的に進むといった傾向は見られず、いずれの場所においても比較的安定していると考えられる.ただし、BSW2が2014年12月14日において3cm以上ターゲット間距

離が狭まっているが、12月30日にはほぼ元の距離に戻っ ている.12月14日においては、5枚の写真より計算した ターゲット間距離の標準偏差が0.25mmとやや大きな誤 差が発生していたことから、異常値であると判断した. また、BSW1は2014年12月にターゲットが損傷し、計測 が不可能となった.さらに、撮影された写真に不具合 (手振れ、ピンボケなど)が生じており、ターゲット間 の距離が計算できなかったケースもいくつかあった.こ れは、図-2で示した明度分布のようにターゲットの黒色 部分と円形の境界が明瞭で、明度の閾値が明確に定義で

図-8 主塔上部 (SW1, SW2, SW3, NW) における目地開き・開口幅の経時変化

図-9 副塔内部 (SubT1, SubT2) における目地開き・開口 幅の経時変化

きなければ、円形部分を認識できず、重心計算ができないためである。特に副塔内部に設置したターゲットは暗部に位置し、フラッシュを使用しても、手振れ・ピンボケなどが生じやすかったためであると考えられる。

4. まとめ

本研究では、バイヨン中央塔の基壇,主塔上部,副塔 内部における石積みの挙動(亀裂進展・目地開きに伴う 石積みの動きなど)を正確に把握するため、合計13か所 に反射ターゲットを設置し、精密写真測量(単写真測 量)を用いた計測を実施した.以下に本研究により得ら れた知見などをまとめる.

- 反射ターゲットを設置したいずれの場所においても、 周期的な開・閉口を繰り返しており、変動幅は ±1mm程度である.
- また、開口あるいは閉口が進展的に進むような傾向 はいずれの場所においても見られず、現時点で、安 定性を保っているものと考えられる。
- 本計測手法は、計測に際し、電源を必要とせず、安価でターゲット設置も容易であり、耐候性・耐久性に優れ、「誰でも簡易に計測できる」という最大の

特長がある.

本手法は、クラックゲージを用いた計測のように常時、開口幅の経時変化をモニタリングするというタイプの計測方法ではなく、例えば、遺跡の管理者が定期的に点検を行う際、デジタルカメラを持参し、写真を撮影さえすれば、目地および亀裂の開口幅の測定ができ、過去の計測結果から、経時変化がわかり、石積みの変状が評価できるというものである。

また、今後の課題としては、以下の点が挙げられる.

- 主塔の南西側においては別途パイ型クラックゲージ を用いたリアルタイム計測が実施されており、異な る計測手法による結果の比較を行う必要がある。
- 温度の変化による石材そのものの伸びや1日における
 目地・亀裂の開口幅の時間変化を調べる必要がある.
- 別途実施している基壇内部の土壌水分の計測結果, 主塔上部で計測している風速などの測定結果などと あわせて、中央塔およびその基壇の変状メカニズムの解明を行う必要がある。
- 今後も計測データを蓄積することで、バイヨン中央
 塔の保全・修復計画の立案に有益な情報を提供していく必要がある。

謝辞

本研究の遂行にあたり、岡山大学環境生命科学研究科、西 山哲教授ならびに京都大学大学院工学研究科都市社会工学専攻、 矢野隆夫技術専門員に多大なる協力・指導を頂いた.ここに感 謝の意を表する.

参考文献

- 日本国政府アンコール遺跡救済チーム(JASA): "ア ンコール遺跡救済 ユネスコ信託基金による日本政府第 3 期事業報告書 Book II, バイヨン寺院 保存修復研究 報告書",2011.
- Kanazawa A, Nishiyama S, Yano T and Kikuchi, T.: Measurement of the crack displacement using digital photogrammetry for evaluation of the soundness of tunnels. *Proc. of GEOMATE 2012*, KL Malaysia, Nov. 14-16, paper ID:250, 2012.
- 金澤彬,西山哲,矢野隆夫,菊地輝行:構造物の維持 管理のためのひび割れ幅の 画像計測手法の研究,第 41 回岩盤力学に関するシンポジウム講演集,pp.332-336,2012.
- Barton, N., Bandis, S. and Bakhtar, K.:: Strength, deformation and conductivity coupling of rock joints. *Int. J. Rock Mech. & Min. Sci. & Geomech. Abstr.* 22 (3), pp. 121-140, 1985.
- Trinder, J. C.: Precision of digital target location. *Photogrammetric Engineering and Remote Sensing*, 55, pp. 883-886, 1989.
- Penna, M. A.: Determining camera parameters from the perspective projection of a quadrilateral, *Pattern Recognition*, 24(6), pp. 533-541, 1991.

Crack/joint measurement of ancient masonry structures using photogrammetry at Bayon central tower, Angkor ruins, Cambodia

Yuki NAKANISHI, Tomofumi KOYAMA, Ryota HASHIMOTO and Yoshinori IWASAKI

It is necessary and important to evaluate the stability of ancient masonry structures properly for the preventive conservation of the world heritage. In this study, Joint and/or crack measurement using photogrammetry was carried out to investigate the stability of Bayon temple, Angkor, Cambodia to investigate and its foundation. The adopted method is simple without any electricity and does not require any special skill for the measurement (just take photos of targets), which will be a merit to apply to the measurement of masonry structure registerd as a world heritage. According to the measurement, each target dos not show any progressive displacement and the masonry buildings will be stable in this stage.