フローポンプ法を用いた岩石の CO₂透過・貯留特性の実験的研究

三谷 泰浩1・池見 洋明1・野口 拓也2*・本田 博之2

¹九州大学大学院 工学研究院 附属アジア防災研究センター(〒819-0395 福岡市西区元岡 744)
 ²九州大学大学院 工学府 建設システム工学専攻(〒819-0395 福岡市西区元岡 744)
 *E-mail: noguchi@doc.kyushu-u.ac.jp

本研究では、CO₂地中貯留技術に資するために難透過性岩石の超臨界CO₂の透過・貯留メカニズムの把握,また、その特性の定量的評価を目的とし、貯留層原位置の圧力・温度状況下における水飽和状態の難透過性岩石に対しフローポンプ法により定流量でCO₂を注入する実験を行った.実験の結果,超臨界CO₂注入下での試験体両端の差圧は段階的に変化し、最終的に定常状態となることが確認された.また、実験結果に対し、二層流に対応したフローポンプ法の厳密解を用いて、水、CO₂それぞれの相対浸透率、試験体の比貯留率を算出した.その結果、これらの特性値の変化から、試験体内に流入した超臨界CO₂は、岩石内の微小な空隙内に浸透し、貯留されながら透過していく現象を定量的に明らかにした.

Key Words : spercritical CO₂, low permeale rock, laboratory test, CCS

1. はじめに

近年,世界的に地球温暖化が大きな問題となっており, その緩和策の一つとしてCO2地中貯留技術が注目されて いる.この技術は、発電所や製鉄所といったCO,の大規 模排出源においてCO2を分離・回収し、地下深部に隔離 するという技術である.一般的に考えられている貯留方 法は、上部に不透過性のキャップロックを持つ帯水層へ CO2を圧入し、キャップロックによりこれを固定する方 法である.しかし、プレート境界に位置し、地殻運動が 活発な日本では、そのような地質構造の分布は極めて限 定的である. そこで, 貯留層の代替案として比較的広範 囲に分布する地下深部の堆積岩層が貯留対象の一つとし て検討されている. 地下深部の堆積岩層は固結度が高く 内部での流体の移動速度は極めて小さく, 難透過性であ ると考えられる.この方式は、このようなキャップロッ クを有しない難透過性堆積岩層にCO2を圧入することで CO2を岩盤中に長期的に滞留させ、地下水への溶解や鉱 物反応といった地球科学的な固定に期待しながら、CO2 を貯留するものである^{1),2)}.

しかし、このような難透過性岩盤を対象とした貯留方 式を検討するにあたっては、貯留層におけるCO2の長期 的かつ安定的な隔離が可能であることを明らかにする必 要があり、そのためには、貯留対象岩盤におけるCO2透 過・貯留メカニズムについて把握する必要がある.しか しながら,難透過性岩石を対象として超臨界CO2の透 過・貯留特性を研究した例は少なく^{3,9},その透過・貯 留特性について明らかにされておらず,その評価手法も 確立されていないのが現状である.

本研究では、貯留層原位置における地下深部の圧力・ 温度状況を再現し、難透過性岩石である相浦砂岩に対し CO₂を注入する実験を行い、そのCO₂透過・貯留特性の 定量的評価を試みる.実験では、透過試験法としてフロ ーポンプ法を用い、異なる境界条件下での実験を行う. また、実験結果に対し厳密解を用いて透過・貯留特性と して、水、CO₂それぞれの相対浸透率および比貯留率を 算出し、相浦砂岩のCO₂透過・貯留特性について定量的 評価、検討を行う.

2. 実験概要

(1) 試験体

試験体として,長崎県佐世保市にて産出される相浦砂 岩を用いる.その物理的特性は,単位体積重量22.54 kN/m³(2.3 g/cm³),平均空隙率15.5%である.試験体は, 岩石ブロックからコアを採取し,直径 50 mm,高さ100 mmの円柱形に整形したものを用いる.

(2) 実験システム

CO₂地中貯留の対象となる貯留層は,深度800~1,200 mであり,この深度での地圧および温度はCO₂の臨界点

(圧力:7.38 MPa, 温度:31.1 ℃)を超え, 圧入された CO₂は超臨界状態となる. そのため, 実験においても試 験体に注入されるCO₂を超臨界状態に維持する. そこで, 流体を注入する装置にシリンジポンプを用いることで地 下深部と同等の拘束圧, 間隙圧を負荷することを可能に した実験システムにより実験を行う. 実験システムの概 略図を図-1に示し,以下にその特徴について述べる.

シリンジポンプは、試験体上流側に流体注入用として 1台 (Syringe pumpA), 試験体下流側に圧力貯留槽とし て1台 (Syringe pumpB) 設置するほか, さらにもう1台, 拘束圧用として設置(Syringe pumpC)し、三軸容器内の 試験体に拘束圧を載荷する. 注入側および貯留槽のシリ ンジポンプには、温調ジャケットが装着されており、試 験時の温度を制御する.また、ゴムスリーブにより被履 された三軸容器内の試験体は、さらにその上からシリコ ンシーリング材によりシールされており、容器内のヒー タにより温度管理を行う.また、実験システムのすべて の装置は恒温室内に設置され、さらに装置の主要部分は、 特殊空調により恒温制御されたビニールハウス内に設置 されることで厳しい温度管理を行う. さらに, 配管類を 温度制御された水が循環する恒温水槽内に設置すること で配管内の温度変化を最小限に軽減し、CO2を超臨界状 態に維持し、温度変化による影響を最小限に抑える.

(3) 実験方法

実験では,試験体上流側の注入側シリンジポンプを定 流量モードに設定し,流体を一定流量で注入することで 試験体両端に誘発される差圧を試験体上流側、下流側そ れぞれに設置した圧力計により計測する.実験は、下流 側の貯留槽のシリンジポンプを次に示す2つの条件下で 制御して実施する. 1つは, 貯留側を完全に閉塞した条 件,つまりCO2が漏洩しない条件を再現し、シリンジポ ンプを停止モードに設定したCase 1(非定圧条件),も う1つは、貯留側を一定圧力に制御した条件、つまり CO2がある圧力以上で漏洩する条件を再現し、定圧モー ドに設定したCase 2(定圧条件)である.一連の実験に おいて、まず岩石の透水特性を把握するため水飽和状態 の試験体に対し透水試験を行い、その透水特性を把握し た後、注入側シリンジポンプに超臨界COかを充填し、同 ー試験体に対し超臨界CO2の透過・貯留実験を行う. Case1, Case2それぞれにおける実験条件を表-1に示す. また、Case2においては、実験終了後、同一の岩石ブロ ックからコア抜きした試験体を用いて、超臨界CO2によ る透過実験を行う.

3.実験結果および考察

CO2透過・貯留実験の実施前に行った透水試験におい て得られた結果より、定常状態の差圧に対しダルシー則 を用いて岩石試験体の透水係数を算出した結果、Casel、

表-1 実験条件

	拘束圧	初期間隙圧	温度	注入流量
	(MPa)	(MPa)	(°C)	(µl/min)
Case1 Case2	20	10	35	3

図-1 実験システム概略図

Case2それぞれ5.24×10⁸ cm/s, 1.58×10⁸ cm/sであった 続いて, CO₂透過・貯留実験により得られた試験体両 端の差圧の時間変化をそれぞれ図-2, 図-3に示す.

Casel, Case2それぞれの結果とも,段階的な差圧変化 が確認できる.図-2より,Caselの場合,実験開始後急 激に上昇した差圧は、一旦定常となった後再び上昇し、 その後、徐々に差圧の上昇は緩やかとなり、ピーク値 を示した後、段階的に減少していく.その後、約320時 間で差圧が急激に減少し、間隙圧が約19 MPaと拘束圧に 近い値を示したため、そのまま実験を継続すると間隙 圧が拘束圧を超過する恐れがあり、実験を終了した. そのため、最終的な定常状態は確認できなかった.一 方、図-3に示すCase2においては、Caselの場合と同様に、 実験開始後急激に上昇した差圧は一旦定常となった後、 再び急激な上昇を始め、徐々に差圧の増加はゆるやか となり、ピーク値を示す.その後、減少を始めた差圧 は、実験開始後約120時間で最終的に定常状態となって いる.

いずれのケースにおいても,超臨界CO₂注入時の差圧 の変化は、同じような挙動を示す.具体的には、実験 開始後差圧が急激に上昇し一旦定常となる第一段階、さ らに差圧が再び急激に上昇した後一旦定常となる第二 段階、そして、その後差圧が減少を始める第三段階を 経て最終的には定常状態となる第四段階の4つの段階 の挙動を示す.これらの挙動から、超臨界CO₂の岩石中 の透過挙動を段階毎に分析する.まず、第一段階にお いて一旦定常状態となった差圧から透水係数を算出し たところCaselでは、4.90×10⁸ cm/s 、Case2では、1.58× 10⁸ cm/sと、透水試験による結果とほぼ同じ値を示す.

このことから、この段階では、ポンプより注入が開始 されたCO2が試験体に到達するまでに、配管内に残存し た水を押し出すことにより試験体内では透水試験と同 様の現象が起きているといえる. 第二段階においては, 注入(上流)側の圧力の上昇に伴い差圧が急激に上昇し ており、この差圧の上昇段階においては、岩石内へ超臨 界COか浸透を始めたと考えられる. しかしながら, 差 圧が上昇し続けていることを考えると、CO2は下流側へ は到達しておらず、試験体内を緩やかに移動していると 考えられる.そして、差圧の上昇が徐々に緩やかとなり、 一旦定常状態を示した段階において、CO2の透過圧が岩 石のThreshold圧に達することで、試験体下流側に到達し たと考えられる.ただし、この段階では、CO2の一部が 下流側へ到達した段階であり、超臨界CO2の流れ場が岩 石内に形成されたとは考えられない. そして、第三段階 において、差圧は減少を始め、徐々に超臨界CO2の流れ 場が形成され、第四段階においてはじめて試験体内にお けるCO2の流れが定常状態となったと考えられる.

両者の違いとしては、各段階に到達する時間がCasel の方がCase2に比べて大きい点が挙げられる.このこと は、Caselのような条件下においては、超臨界CO₂の透過 に長い時間を要することを意味しており、流動の遅延は、 CO₂の地下水への溶解などの地化学的反応に優位に働く ことを示唆する.しかしながら、Caselの条件下におい て、最終的な定常状態になる前に拘束圧を超えるような 間隙圧が発生するということは、岩盤への間隙圧の影響 を無視できないことを意味し、CO₂注入による岩盤の膨 張変形につながることも示唆している.これらの結果は、 CO₂の注入の実務的な運用に際してその注入速度,注入 圧力の設定において有用な知見となりうる.

4.002透過・貯留特性の評価

(1) 解析手法

フローポンプ法による透過特性については、江崎らに より装置の貯留性を考慮した厳密解が提案されている⁹. 本研究では、このフローポンプ法の厳密解に対して多相 流のダルシー式を適用することで二相流に対応した形に 変形した(1)式を厳密解として、実験結果に対し逆解析 を行い水の相対浸透率 k_{nv} , CO₂の相対浸透率 k_{nco} , 試験 体の比貯留率 S_s を算出することにより岩石の透過・貯留 特性について定量的に評価する⁹.

逆解析において、本来差圧変化の定常部分により決定 される透水係数というパラメータを水およびCO2の相対 浸透率という2つのパラメータで決定するため同一の差 圧の値を満たす水とCO2の相対浸透率の組み合わせが複 数存在する.そこで、毛管圧と飽和度の関係式を導入し、 水、CO2の相対浸透率の組み合わせを決定する.その際、 濡れ相である水の相対浸透率には、Van Genuchten式⁷⁰を、 非濡れ相であるCO2の相対浸透率にはCoery式⁸⁰を適用し、 逆解析により得られたそれぞれの相対浸透率の値から算 出される水、CO2有効飽和度の値が極力近くなるような 水、CO2の相対浸透率の組み合わせを選択する.

(2) 透過・貯留特性の評価

解析により得られた水の相対浸透率k_n, CO₂の相対浸 透率k_{rco2}, 試験体の比貯留率S_sの時間ごとの値を表-2に, 相対浸透率の時間変化を図-4に,比貯留率の時間変化を 図-5に示す.

相対浸透率の時間変化をみると、いずれのケースにおいても実験開始からkmの値は、前述した第一段階において、やや減少した後、第二段階の差圧の上昇を示す段階において急激に減少している。その後、差圧が減少する段階において徐々にその減少率は低下し、一定値に近づく傾向を示す。一方、kco2は、差圧がピーク値を示す第二段階終了までは、ほとんど変化せず、それ以降、少しずつ上昇している。このことは、前節の考察で述べた通り、差圧変化がピーク値を示すまでは、超臨界CO2の透

過現象は生じておらず、岩石内に超臨界CO2が流入しているものの、試験体内においては、水の流れが卓越している状態にあることを示している. その後、kmが減少を

(1)

$$H(z,t) = \frac{qL}{A(\frac{k_{rw}}{\mu_w} + \frac{k_{rCO\,2}}{\mu_{CO\,2}})k} \left[\frac{1}{L} - 2\sum_{n=0}^{\infty} \frac{\exp\left\{-\frac{\left(\frac{k_{rw}}{\mu_w} + \frac{k_{rCO\,2}}{\mu_{CO\,2}}\right)}{S_s}k\beta_n^2 t\right\}\sin(\beta_n z)}{L\delta\beta_n\cos(\beta_n L)\left\{L\left(\beta_n^2 + \frac{1}{\delta^2}\right) + \frac{1}{\delta}\right\}} \right]$$

表-2 相対浸透率と比貯留率の値

Time [hours]	k _{rw}	k _{rCO2}	$S_s[1/cm]$
0	1	0	-
50	0.92	5.39×10 ⁻⁸	0.0008
120	0.54	0.0009	0.011
150	0.3	0.013	0.012
175	0.2	0.017	0.013
200	0.18	0.023	0.014
230	0.17	0.024	0.015
250	0.165	0.025	0.016

(1)	0	0
h)	1 20	<u>_</u> '/
(D)	Julia	<u> </u>

Time [hours]	k _{rw}	k _{rCO2}	$S_s[1/cm]$
0	1	0	1
33	0.94	0.002	0.00124
70	0.43	0.0085	0.00124
121	0.024	0.052	0.0083
180	0.024	0.064	0.0083

続けるとともにkmは徐々に増加する. Caselにおいては、 k_{rco2} の値は、 k_{w} の値よりも大きくなることはないが、 Case2においては、差圧が定常状態を示す時点において その大小関係が逆転している. このことは、差圧が最終 的な定常状態になった状態で初めて超臨界CO2の透過現 象が生じたことを示しており、この時点で、CO2が試験 体の下流側に到達し、試験体にの流路が形成され始めた ことを示す. その後, Case2をみると、kcopの値は徐々に 増加する傾向がみられるが、その増加は徐々に一定に落 ち着く傾向がみられる.本来,二層流の流れ場において, それぞれの流体の流れ場が完全に入れ替わり、単層流れ となる場合,つまり,試験体内の全ての水が排出され CO2の単相流れが生じるならば、kmの値は0に、kmの値 は1にそれぞれ近づくと考えられる.しかしながら、実 験においては、このような状況は確認されないことから、 COの流れが定常状態となった状況において、岩石内の空 隙はCO2により満たされているのではなくCO2により置 換されなかった水が残留していると考えられる. このこ とは、実験後に実施した超臨界CO2の透過試験の結果か ら, 超臨界CO₂の透過係数が, 2.13×10⁶ cm/sであり, Case2の最終的な定常状態の差圧に対しダルシー則を用 いて算出した透過係数の値は、1.35×10⁸ cm/sとなり、単 層流れよりも小さな値を示したことからも確認できる.

また、図-5に示す比貯留率の変化をみると、 krco2の値 が上昇する段階において比貯留率の値は急激に増加して

いる.このことは、試験体内に流入したCO₂が、微小な 空隙内に浸透し、貯留されながら透過していくことを示 しており、CO₂の流れ場が形成されている状況において も難透過性岩石内には、CO₂を貯留させる能力があると 考えられる.

5.おわりに

本研究では、フローポンプ法を用いて、難透過性岩石 を対象にした超臨界CO2の透過・貯留実験を実施し、そ の透過・貯留メカニズムおよびその特性について実験と 解析から評価を試みた.その結果、以下の点が明らかと なった.

- 難透過性岩石に対し,想定される貯留層の地圧・温 度条件下にてフローポンプ法により超臨界CO2によ る透過実験を行った結果、CO2の透過挙動に応じた 4段階の特徴的な差圧変化が確認できた.
- 排出側の境界条件を変えた実験を行った結果, CO₂ の透過に要する時間の影響, 岩石への膨張圧への影響を確認することができた.
- 3) 超臨界CO₂を難透過性岩石へ注入した場合,岩石の 貯留性は大きく,岩石内の微小な空隙への貯留に期 待できる.
- 4) 岩石内におけるCO2の流れが定常状態となっても、 岩石内には、CO2の単相流れが形成されるのではなく、岩石空隙内には水が残留する.

以上のように,難透過性岩石に注入された超臨界CO₂ は,岩石の微小な空隙に貯留されながら透過していくだ けでなく、長い時間をかけて岩石内を流動していく中で、 空隙内に残留した地下水への溶解といった地球化学的ト ラップにも期待でき、難透過性岩石はCO2の貯留対象と して有効であると考えられる.

今後は、CO2透過・貯留特性評価の精度向上のために 実験条件や解析手法等のさらなる検討行うほか、岩石に 貯留される具体的な貯留量などに関しても検討する予定 である.

謝辞

本研究は日本学術研究会の科学研究費補助金(基盤研究 (B) 25289331)の助成を受けたものである.

参考文献

- 薛自求:二酸化炭素地中貯留と岩石物性の地殻工学 への応用, Journal of Geography,第114巻,第6号, pp.988-1002,2005.
- Takagi, M : CO₂ Geological Storage Capacity in Japan, *Journal of the Japan Institute of Energy*, Vol.90, No.10, pp.941-946, 2011
- Kogure, T., Kitamura, K., Yamada, T., Nisizawa. And Xue, Z. : Relative Permeability of Water and Supercritical CO₂ System under Steady-state Flow Conditions in Porous Sandstones, *Journal of geography*. Vol.120, No6, pp.944-959, 2011.
- 4) Sakamoto, Y., Suzuki, Y., Tanaka, A., Tenma, N., Haneda, H., Komai, T., Yamaguchi,T. : Simulation Study of a Laboratory-Scale Experiment for Flow Behavior of Supercritical CO₂ in Porous Media, *Journal of MMIJ*, Vol.127, pp.622-634, 2011.

- Esaki, T., Zhang, M., Takeshita, A. and Mitani, Y. : RigorousTheoretical Analysis of A Flow Pump permeability test, *Geotechnical Testing Journal*, Vol.19, No3, pp241-246,1996.
- Mitani, Y., Arshad, A., Ikemi, hiro., Kuze, K. and Oura, S. : A new flow pump permeability test applied on supercritical CO2 injection to low permeable rocks, *International Journal of the JCRM*, Vol.7, No.1, pp.25-31, 2011.
- Van Genuchten, M.TH.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, *Soil Sci. Soc. Am. J.*, Vol.44, No.5, pp.892-898, 1980.
- Corey, A.T. :Interreaction between Gas and Oil Relative Permeabilities, *Producers Monthly*, vol.19, No.1, pp.38-41, 1954.

EXPERIMENTAL STUDY ON PERMEABILITY AND STORATIVITY OF CO₂ IN LOW PERMEABLE ROCK BY FLOW PUMP PERMEABILITY TEST

Yasuhiro MITANI, Hiro IKEMI, Takuya NOGUCHI and Hiroyuki HONDA

In order to clarify the properties of permeability and storativity of low permeable rocks injected with supercritical CO₂, flow pump permeability test under the condition of temperature and pressure of in-situ CO₂ reservoir has been conducted. In this experiment, the differential pressure between both ends of specimen changed in 4 stages and finally in stable condition. Furthermore, relative permeability of water and CO₂, and specific storage of specimen has been calculated with theoretical analysis of flow pump permeability test for two phase flow. It has been quantitatively clarified that the supercritical CO₂ has been penetrated into the microscopic pore and captured in the rock.