ビーチロックの物理・力学特性

檀上 尭1*·川崎 了²·畠 俊郎³

¹北海道大学大学院 工学院環境循環システム専攻(〒060-8628 北海道札幌市北区北13条西8丁目)
²北海道大学大学院 工学研究院環境循環システム部門(〒060-8628 北海道札幌市北区北13条西8丁目)
³長野工業高等専門学校 環境都市工学科(〒381-8550 長野県長野市徳間716)
*E-mail: DANJO@geo-er.eng.hokudai.ac.jp

国内外の文献において報告例が少ないビーチロックの物理・力学特性を把握し、さらに一軸圧縮強さ q_u と各種物性の相関を検討することを目的として、原位置試験および室内試験を実施した.その結果、ビー チロックの湿潤状態における q_u は、調査地点 A、M、G でそれぞれ 11.14±4.11 MPa、19.91±6.72 MPa、42.23±11.54 MPa であることがわかった.また、 q_u との相関が高い物性は形成年代 t であり、 $q_u \approx 0.0158t$ なる関係がみられた.これは、一般の堆積岩に比べて強度増加の速度が速いことを示している.さらに、 微生物の影響がビーチロック形成に関与している可能性があることがわかった.

Key Words : beachrock, physical property, mechanical property, unconfined compression strength, radiocarbon age, elemental concentration, microbe

1. 諸言

我が国における社会資本は、高度経済成長期において 大量に造られた.国土交通省は国土交通白書 2010¹⁰の中 で、建設後 50 年以上が経過する港湾岸壁施設の割合は 2009 年度では約 5 %であるのに対し、2029 年には約 48 %まで高まると述べている.また、公共事業費は今後 も少ないと考えられるため、今ある港湾岸壁施設を低コ ストで修復・補強し、さらにその修復・補強材が自己修 復能力を持つこと、すなわち劣化によるひび割れを自然 の生物学的・化学的作用により塞ぐことが望ましい.

そこで,筆者らは沿岸域で適用可能な自己修復能力を 持つ人工岩盤の研究開発を進めている.具体的には,自 然の材料(微生物,砂,貝殻,サンゴ片,海藻など)を 用いて,厳しい気象条件に耐えうる強度の人工岩盤を短 期間で形成させることを目指している.そして,港湾岸 壁施設のひび割れ箇所が狭い範囲であれば,人工岩盤の 材料を流し込み,また,修復範囲が広い場合は,今ある 港湾岸壁施設や岩盤になじみやすい材料を用いた人工岩 盤を必要なところに形成させるという対策を考えている.

その人工岩盤のモデルとして、筆者らは自然界に存在 するビーチロック(beachrock, 写真-1 参照)に着目した. 地学団体研究所によるビーチロックの定義²は「砂浜の 潮間帯に生ずる非常に新しい固結した石灰質岩.(中 略)セメント物質は石灰質・鉄分,被セメント物質は粒 度・質に関係なくあらゆるものを含む.熱帯・亜熱帯の 海岸にみられ、日本近海では南西諸島にみられる.」と なっている.ビーチロックは、形成期間が短いものでは 数十年程度である点^{3,4}、また海岸に存在する点、さら に台風や大潮などによる侵食の影響を受けているにもか かわらず存在している点において、人工岩盤のモデルと しての有効性があると筆者らは考えている.そこで、ビ ーチロックが人工岩盤のモデルとして適しているかを判 断するために、既往のビーチロックに関する国内外の文 献を集め、必要な情報をまとめてきた.その結果、ビー チロックの物理・力学特性に関する情報が非常に少ない ことがわかった.一軸圧縮強さや密度などの物理・力学 特性の把握は、ビーチロックが人工岩盤のモデルとして

写真-1 ビーチロックの例(沖縄県国頭郡本部町後備浜原)

適しているかどうか, すなわち厳しい沿岸域の気象条件 に耐えうる物理・力学特性を有しているかどうかを判断 する上で重要である.また,ビーチロック形成の要因に ついて,海水の温度変化⁹,地下水のpH変化⁹,微生物 の影響^{7,8}などの諸説があり,特に自己修復能力を有す る人工岩盤の開発のためには現地に生息する微生物の代 謝を利用することが望ましいため,調査対象地点のビー チロック形成における微生物の影響の有無を評価するこ とは,人工岩盤を作製していく上で重要な情報になると 考えられる.さらに,形成年代に対する強度変化や強度 増加に伴う元素含有率の変化も同様に重要である.

以上のことから、本稿では、試験データが非常に不足 しているビーチロックの物理・力学特性を把握し、一軸 圧縮強さと形成年代および元素含有率、微生物の菌数と の相関を検討することを目的とし、国内で調査・報告事 例が多い沖縄本島のビーチロックを対象とし、現地およ び室内にて、物理・力学試験、元素分析、菌数測定を行 なった結果について報告する.

2. 試験方法

沖縄本島の後備浜原, 真栄田, 儀間, 済井出(以下, 順に調査地点A, M, G, Sとする)の4地点(図-1参 照)のビーチロックを対象にして,物理・力学試験およ び元素分析, 菌数測定を行なった.その試験項目の内訳 は表-1のとおりである.調査地点A, M, Gでは, 一軸 圧縮試験,密度測定,含水比測定,弾性波速度測定,元 素分析を実施した.一方,これらの3地点に比べて軟質 な堆積物であり,かつサンゴ片などの粒形が残っている 調査地点Sでは,針貫入試験および菌数測定を行なった. 各試験項目の試験方法は,以下のとおりである.

(1) 一軸圧縮試験

調査地点 A, M, Gの3地点のビーチロック周辺から 15 cm×15 cm×25 cm 程度の岩石を1つずつ採取し,採取 した岩石を直径3 cm×高さ6 cmの円柱形供試体に成形 した. コアリングの方向は,直交する2方向(X方向, Y方向)とし,現地から採取する前の岩石の鉛直方向を X方向とした.また,成形した供試体を試験に供するま での間,水道水に浸けて湿潤状態に保ったものと,80℃ の恒温乾燥炉に3日間入れて乾燥状態にしたものに分け た.なお,3日間の炉乾燥により,すべての供試体が一 定の質量になることを確認している.供試体数の内訳は, **表**-2 のとおりである.これらの供試体に対して,イン ストロン万能試験機(INSTRON 社製,5586)を用いて 一軸圧縮試験を実施した.なお,軸ひずみ速度は0.03 mm/min,データサンプリング間隔は0.10 sとした.

図-1 調査地点

表-1 試験項目

調査地点	物理・力学試験	その他		
A, M, G	一軸圧縮試験 密度測定 含水比測定 弾性波速度測定	元素分析 (EDX)		
S	針貫入試験	菌数測定		

表-2 調査地点A, M, Gの供試体条件

調査地点	方向	状態	供試体名	供試体数
	Х	湿潤(W)	AXW	3
А	Y	同上	AYW	3
	Х	乾燥(D)	AXD	2
	Y	同上	AYD	3
	Х	湿潤(W)	MXW	3
М	Y	同上	MYW	0
	Х	乾燥(D)	MXD	3
	Y	同上	MYD	0
	Х	湿潤(W)	GXW	3
G	Y	同上	GYW	3
	Х	乾燥(D)	GXD	3
	Y	同上	GYD	3

(2) 密度測定

表-2の供試体について,一軸圧縮試験を行う前に, 供試体の高さ,直径,質量の測定を行ない,湿潤および 乾燥状態の密度を計算により求めた.

(3) 含水比試験

含水比試験の方法は、地盤工学会基準(JGS 2134-2009)に準拠して行なった.ただし、炉乾燥の方法が基準と異なり、80℃の恒温乾燥炉に入れ、一定質量となるまで炉乾燥させた.また、本試験は、表-2の湿潤状態の供試体のみを用いて一軸圧縮試験後に行なった.

(4) 弾性波速度測定(P波,S波)

表-2 の供試体について,一軸圧縮試験を行う前に弾 性波速度測定装置(応用地質製,MODEL-5251)によっ て無拘束圧下における P波速度および S 波速度の測定を 各 3 回ずつ実施した.測定は,超音波の周波数としてそ れぞれ 200 kHz および 100 kHz の振動子を用い,また P 波速度測定時においては,振動子と供試体を圧着する際 に供試体の端面にグリスを薄く塗布した.

(5) 元素分析

湿潤かつ X 方向の供試体のうち,各調査地点で最も 一軸圧縮強さが大きいものを1本ずつ選び,実験室内で 自然乾燥させ,それらの供試体の一片に白金 (Pt)を蒸 着させて,走査型電子顕微鏡 SEM (島津製作所製, SUPERSCAN SS-550)によって観察した.また,エネル ギー分散形 X 線分析装置 EDX (島津製作所製, SEDX-500)により元素分析を行なった.

(6) 針貫入試験

調査地点Sの原位置において、軟岩ペネトロ計(丸東 製作所製,SH-70)を用いて、硬さの異なる2種類の露出 しているビーチロック(EB-1およびEB-2)と土中に埋ま っているビーチロック(BB-1)(写真-2参照)に対して 針貫入試験を実施した.一つの試験箇所に対して5回ず つ行ない、測定値を平均した.測定値から針貫入勾配で あるN_P(N/mm)を求め、本装置の取扱説明書⁹に記載さ れているN_Pと一軸圧縮強さの相関図より、一軸圧縮強 さを算出した.

(7) 菌数測定

滅菌したスプーンで調査地点Sの各試験箇所の試料を 遠沈管に採取し、5℃で保存した.なお、本試験箇所は 前節(6)の3箇所およびBB-1上部の未固結砂(US-1), 同海岸のビーチロックが形成されていない場所の未固結

写真-2 調査地点Sの針貫入試験箇所(黄色の矢印は,右 から順にEB-1, EB-2, BB-1)

砂(US-2)である. それらの試料に対し, ZoBell2216E 培地(海洋細菌用)と標準寒天培地(一般細菌用)の2 種類の培地で菌数測定を実施した. なお, 培養期間は7 日間とした.

3. 試験結果および考察

(1) 一軸圧縮試験

一軸圧縮試験の結果は、表-3に示すとおりである.

					• • • • • –	
状	供試体	ρ_t, ρ_d	w	q_{u}	V _P	Vs
態	No.	g/cm ³	%	MPa	km/s	km/s
湿	AXW-1	2.01	12.2	10.88	3.60	2.50
潤	AXW-2	2.10	10.3	13.99	3.49	2.44
(W)	AXW-3	2.05	11.3	5.63	3.37	2.29
	AYW-1	2.09	—	17.97	3.37	2.32
	AYW-2	2.01	12.5	7.11	3.41	2.15
	AYW-3	2.08	9.3	11.23	3.73	2.35
-	平均値	2.06	11.1	11.14	3.50	2.34
	$\pm \sigma$	± 0.04	± 1.2	±4.11	± 0.13	± 0.11
乾	AXD-1	1.98	—	25.69	3.75	2.28
燥	AXD-2	1.91	_	15.29	3.46	2.08
(D)	AYD-1	1.76	—	7.92	3.00	2.05
	AYD-2	2.00	—	19.11	3.85	2.22
	AYD-3	2.00	—	27.10	3.80	2.42
-	平均値	1.93	—	19.02	3.57	2.21
	$\pm \sigma$	± 0.09		± 7.03	± 0.32	± 0.13
湿	MXW-1	1.96	25.2	24.31	3.74	2.14
潤	MXW-2	1.96	26.0	11.04	3.44	2.26
(W)	MXW-3	1.98	25.2	24.38	3.88	2.54
	平均値	1.97	25.4	19.91	3.69	2.31
	$\pm \sigma$	± 0.01	± 0.4	±6.27	± 0.18	± 0.17
乾	MXD-1	1.60	—	43.03	3.94	2.77
燥	MXD-2	1.60	—	26.37	3.80	2.83
(D)	MXD-3	1.57	_	18.25	3.80	2.60
	平均值	1.59	—	29.22	3.85	2.73
	$\pm \sigma$	± 0.01		± 10.32	± 0.07	± 0.10
湿	GXW-1	2.49	3.4	49.71	5.14	—
潤	GXW-2	2.49	3.6	57.80	5.05	3.49
(W)	GXW-3	2.50	3.4	50.45	4.77	3.40
	GYW-1	2.44	3.7	31.48	4.82	2.98
	GYW-2	2.40	4.2	24.66	4.57	2.78
-	GYW-3	2.47	4.1	39.25	4.11	2.76
	平均值	2.47	3.7	42.23	4.74	3.08
	$\pm \sigma$	± 0.04	± 0.1	± 11.54	± 0.34	± 0.31
乾	GXD-1	2.38	—	36.61	4.09	2.48
燥	GXD-2	2.36	—	21.86	4.09	2.32
(D)	GXD-3	2.24	—	30.98	3.84	2.46
	GYD-1	2.37	—	39.33	4.20	2.43
	GYD-2	2.31	—	30.39	4.20	2.72
-	GYD-3	2.39	_	27.50	3.99	2.62
	平均值	2.34	—	31.11	4.07	2.51
1	+ a	+0.05		+573	± 0.12	± 0.13

なお,同表には、その他の室内試験結果である供試体の 湿潤密度 ρ_{t} , 乾燥密度 ρ_{d} , 含水比 w, P 波速度 V_P, S 波速度 Vsに関する結果についても一緒に示している. 同表より、一軸圧縮強さ quの全体的な範囲としては 5.63 ~57.80 MPa であり、湿潤状態における q の平均値と標 準偏差 σは, 調査地点 A, M, G でそれぞれ 11.14±4.11 MPa, 19.91±6.72 MPa, 42.23±11.54 MPaである. 調査地 点によって大きく異なっており、調査地点 G が最も q が大きく,調査地点 A が最も quが小さいことがわかる. この大小関係は、乾燥状態の供試体についても同様であ る.一方、本調査地点の沖縄本島を含む南西諸島に多く 存在し、石材としても広く用いられている琉球石灰岩の quは、宮城、小宮¹⁰⁾によると 1.6~47MPa(供試体数は 114 個) で, その平均値は 22.8 MPa であると報告されて おり、強度や強度のばらつきが大きい点において、ビー チロックと類似しているといえる.また,各調査地点に おける乾燥状態と湿潤状態の試験結果を比べると、湿潤 状態の方がより低強度である点についても、琉球石灰岩 と同様の傾向である.ただし、調査地点 G の供試体は 湿潤状態の方が高強度である.一方,X,Y方向の異方 性については、顕著な違いがみられないことがわかる.

(2) 密度測定

密度測定の結果は、表-3 より湿潤密度 ρ_t および乾燥 密度 ρ_d の範囲は 1.96~2.50 g/cm³および 1.57~2.39 g/cm³ であり、 ρ_t の平均値と標準偏差は調査地点 A、M、G で それぞれ 2.06±0.04 g/cm³、1.97±0.01 g/cm³、2.47±0.04 g/cm³である. このように、密度は q_u と同様に地点ごと に違いがみられる. また、密度は調査地点 G が他の 2 地点に比べて大きく、調査地点 M が最も小さい. この 密度の地点ごとの大小関係は q_uの地点ごとの大小関係 と一致していないため、密度と q_uの相関性の低さが推 察できる. そこで、各地点のビーチロックおよび琉球石 灰岩⁹の ρ_d と q_uの関係を図-2 により検討したところ、

図-2 各地点のビーチロックおよび琉球石灰岩⁹のρ_dとq_uの関係(直線はそれぞれの線形近似直線)

調査地点 A のビーチロックと琉球石灰岩では $\rho_d \ge q_u$ の 正の相関がみられるが、調査地点 M と G ではみられな いことが判明した.なお、本節中の琉球石灰岩の試験値 は、小暮ら¹¹⁾の試験結果のうち、本供試体と寸法が類似 している一辺の長さ d が 2.5 cm もしくは 2.6 cm の正方形 断面で、高さが 2d の角柱供試体の試験値である.また、 $\rho_t \ge \rho_d$ の差異は、調査地点 M で顕著に表れている.

(3) 含水比試験

含水比試験の結果は、表-3 より w は調査地点によっ て大きく異なり、調査地点 A, M, G でそれぞれ 9.3~ 12.5 %, 25.2~26.0 %, 3.4~4.2 %であり、平均値と標準 偏差はそれぞれ 11.1±1.2 %, 25.4±0.4 %, 3.7±0.1 %であ る. この調査地点 M の含水比の高さが、前節(2)で述べ た ρ_t と ρ_dの差異が大きい原因の一つであるといえる.

(4) P 波および S 波速度測定

表-3 より、V_Pおよび V_sの範囲は 3.00~5.14 km/s およ び 2.05~3.49 km/s であり、乾燥状態での平均値と標準偏 差は調査地点 A, M, G でそれぞれ 3.57±0.32 km/s およ び 2.21±0.13 km/s, 3.85±0.07 km/s および 2.73±0.10 km/s, 4.07±0.12 km/s および 2.51±0.13 km/s である. これらの結 果を他の岩の Vp と比較すると、qu が類似している琉球 石灰岩¹¹⁾は乾燥状態で 5.03±0.21 km/s とビーチロックよ り大きいことがわかる. 一般的に, 石灰岩¹²の V_Pは 5 ~7 km/sの範囲に多くみられる.一方,石灰岩以外の堆 積岩であるチャート,砂岩,粘板岩¹²⁾の V_Pは, 3~5 km/sの範囲に多くみられ、ビーチロックと類似している. ビーチロックは石灰岩と同じくサンゴ片などの石灰質の 堆積物からなるにもかかわらず, Vp が石灰岩に比べて 小さい原因は、形成年代が石灰岩に比べて短いビーチロ ックは密度が石灰岩より低いため、密度と正の相関があ る V_Pも石灰岩より小さくなったと推察される.

(5) 元素分析

各調査地点における湿潤かつ X 方向の供試体のうち, 最も q_u が大きい供試体 AXW-2, MXW-3, GXW-2を対象 として実施した試験結果について述べる. EDX による 元素分析の結果は、図-3 のとおりである. 図-3 より, 全体の傾向としては CaO > C > MgO > SiO₂ \Rightarrow SrO \Rightarrow Y₂O₃ \Rightarrow Al₂O₃ \Rightarrow Na₂Oであることがわかる. また, CaO および C の含有率は、それぞれ 50.23~59.65 %および 35.60~46.49 %であり、CaO と C で 9 割以上を占めてい る. その他の元素含有率が低い点やサンゴ片などから構 成されている点を考慮すると、調査地点 A, M, G のビ ーチロックは 9 割前後が炭酸カルシウムで構成されてい るといえる. また、1 章で述べたビーチロックの定義に は「セメント物質は石灰質・鉄分」とされているが、本 調査地点のビーチロック中には鉄分が見られないことが 図-3 よりわかる. さらに, ビーチロックのセメント部 に関する報告の中には, セメント部は主に Mg 方解石で あるとする報告¹³や, 霰石や方解石が主なセメントであ るとする報告^{7,8}など, 地点によって様々な報告がある. GXW-2 は MgO の含有率が比較的高いことからセメント 部は Mg 方解石であり, AXW-2 および MXW-3 のセメン ト部は CaO および C 以外がほとんど含まれていないた め, 霰石や方解石であると推定される.

本試験結果だけでは、元素とq_uの間に存在する相関に ついて議論することは難しいが、q_uとセメント部の元 素・鉱物の相関を把握することは、人工岩作製の上で重 要である. 今後は、SEM・EDXによる更なる元素分析に 加え、薄片観察や鉱物分析などを行い、相関について把 握する予定である.

(6) 針貫入試験

針貫入試験の結果は、表-4のとおりである.表-4より、 土中に埋まっているビーチロック(BB-1)のN_Pおよびq_u は、露出しているビーチロック(EB-1およびEB-2)に比 べて小さく、約1/6~1/9であることがわかる.これは、 Vousdoukas et al.¹⁴の「海側で露出しているビーチロック よりも陸側で土中に埋まっているビーチロックの方が固 化の程度が低い」という報告と調和的である.また、 EB-1およびEB-2のq_uは、調査地点A, M, Gと同程度の強 度を示している.

図-3 各調査地点のビーチロックの元素含有率

表−4 調査地点Sの各試験箇所の力学特性および菌数

	針貫入試験		菌数測定	
試験箇所	N_{P}	q_{u}	海洋細菌用	一般細菌用
	N/mm	MPa	E+4 CFU/mL	E+4 CFU/mL
海水	_	—	1.3	0
EB-1	80	27	410	45
EB-2	51	18	1500	8.15
BB-1	9	3	460	13.6
US-1	—	—	500	5.4
US-2	—	—	1000	25

(7) 菌数測定

菌数測定の結果は,表-4のとおりである.表-4より, 海洋細菌用と一般細菌用の両培地で得られた菌数を比較 すると,海洋細菌用の方が多いことがわかる.この結果 から,本調査地点のような沿岸部における菌数測定にお いては,海洋細菌用の培地を用いる必要があることがわ かる.海洋細菌用および一般細菌用の両培地で得られた ビーチロック中の菌数は,4.1E+6~1.5E+7 CFU/mLおよ び8.15E+4~4.5E+5 CFU/mLであり,一般的な海岸の菌数 に比べて多い.このことから,ビーチロックの形成に微 生物が寄与している可能性があると推察される.今後は, 炭酸カルシウム析出に関与していると思われる細菌を探 索するため,NH₄-YE寒天培地等により尿素分解を行う 細菌を選択・採取し,人工岩盤の作製実験に用いること を計画している.

(8) 一軸圧縮強さと形成年代の関係

前の図-3より、本調査地点の元素含有率は地点ごと に大きな違いが見られないため、ここでは地点ごとの違 いの影響は考慮しないものとして、q_uと形成年代tの関 係について検討してよいといえる.そこで、以下、q_uと 形成年代の関係について考察する.

 $q_u \ge t$ の関係を図-4 に示す.なお、t は岩石を採取した地点と GPS による緯度・経度の座標値がほぼ同値の小元¹⁵によって測定された形成年代(⁴C 年代)の値である.また、tの単位の yBPは、「西暦 1950 年から~年前」という意味である.同図より $q_u \ge t$ の関係について検討すると、時間の経過に伴って q_u が増加していることがわかる.この $q_u \ge t$ の関係について、切片を 0 とする直線近似式を用いて表すと、 q_u (MPa) と t (yBP)の間には次式のような関係があることがわかった.

$$q_{\mu} \approx 0.0158t \tag{1}$$

一般の堆積岩と堆積岩の一つ¹⁴であるビーチロックを 比べると、ビーチロックは quが数十 MPaになるのに形

図-4 一軸圧縮強さと形成年代の関係

成期間 1000~2000 年程度であるのに対し,一般の堆積 岩では数百万年以上¹⁰の時間が必要である.この強度増 加の速度が大きい点で,ビーチロックが一般の堆積岩に 比べて人工岩盤のモデルとして適しているといえる.

4. 結言

国内外の文献で非常にデータが不足しているビーチロ ックの物理・力学特性を中心とした物性について,沖縄 本島の4地点を対象として実施した試験結果は,以下の とおりである.

ビーチロックの湿潤密度の平均値と標準偏差は、調査 地点A, M, Gでそれぞれ2.06±0.04 g/cm³、1.97±0.01 g/cm³、2.47±0.04 g/cm³であった.また、含水比および湿 潤状態における一軸圧縮強さ q_u は、それぞれ11.1±1.2% および11.14±4.11 MPa、25.4±0.4%および19.91±6.72 MPa、 3.7±0.1%および42.23±11.54 MPaであった. q_u との相関 が高いのは、形成年代tで、 $q_u \approx 0.0158$ なる関係がみられ た.これは、一般の堆積岩に比べて強度増加の速度が速 いため、この点でビーチロックが人工岩盤のモデルとし て適しているといえる.また、ビーチロック中の海洋細 菌用培地における菌数は、4.1E+6~1.5E+7 CFU/mLと一 般的な海岸の菌数に比べて多いため、ビーチロックの形 成に微生物が寄与している可能性があると推察される. 今後はこの微生物の影響について、さらなる検討を行う 予定である.

謝辞:本研究は、日本学術振興会科学研究費補助金基盤 研究(B)(課題番号:21300326,研究代表者:川崎 了)の一部として行なわれた.末筆ながらここに記して, 深甚なる感謝の意を表する次第である.

参考文献

1)国土交通省:国土交通白書 2010, p.34, ぎょうせい, 2010.
2)地学団体研究会:新版地学事典, pp.1083-1084, 平凡社, 2000.

- 3) 武永健一郎: Beach rock の成因について,地理学評論, Vol.38, No.12, pp.739-755, 1965.
- 小笠原 洋,吉冨健一,次重克敏:能登半島,輪島市曽々木 海岸のビーチロック,日本応用地質学会中国四国支部平成 16年度研究発表会,pp.31-34,2004.
- 5) 田中好國:ビーチロックの形成に関する一考察,地理科学, Vol.38, no.2, pp.91-101, 1983.
- 6)米谷静二: 奄美大島本島北部におけるビーチロックの予察的 研究,地理学評論, Vol.36, No.9, pp.519-527, 1963.
- 7) Lazar, B., Enmar, R., Schossberger, M., Bar-Matthews, M., Halicz, L., Stein, M. : Diagenetic effects on the distribution of uranium in live and Holocene corals from the Gulf of Aqaba, *Geochemica et Cosmochimica Acta*, Vol. 68, No. 22, pp. 4583-4593, 2004.
- KNEALE, D. and VILES, H. A. : Beach cement : incipient CaCO₃cemented beachrock development in the upper intertidal zone, North Uist, Scotland, *Sedimentary Geology*, Vol.132, pp.165-170, 2000.

9)株式会社丸東製作所:軟岩ペネトロ計SH-70取扱説明書,4p.

- 宮城調勝,小宮康明:琉球石灰岩の有効空隙率と圧縮強度, 琉球大学農学部学術報告,No.50, pp.131-135, 2003.
- 小暮哲也・青木 久・前門 晃・前倉公憲:琉球石灰岩の 一軸圧縮強度に与える寸法効果と岩石物性の影響,応用地 質, Vol.46, No.1, pp.2-8, 2005.
- 物理探査学会: "土と岩"の弾性波速度 測定と利用 –, 物理探査学会, pp.129-136, 1990.
- 13) Gregory E. Webb, John S. Jell, Julian C. Baker : Cryptic intertidal microbialites in beachrock, Heron Island, Great Barrier Reef: implications for the origin of microcrystalline beachrock cement, *Sedimentary Geology*, Vol.126, pp.317-334, 1999.
- 14) Vousdoukas, M. I., Velegrakis, A. F., Plomaritis, T. A.: Beachrock occurrence, characteristics, formation mechanisms and impacts, *Earth-Science Reviews*, Vol.85, pp. 23-46, 2007.
- 15) 小元久仁夫:南西諸島から採取したビーチロックの ⁴C 年 代および安定同位体比(δ¹³C) –測定資料とその分析-, 日本大学文理学部自然科学研究所研究紀要, No.40, pp.1-27, 2005.
- 16) 岡本隆一,緒方正虔,小島圭二:土木地質,新体系土木工 学 14, pp.92-98, 技報堂出版, 1984.

PHYSICAL AND MECHANICAL PROPERTIES OF BEACHROCK

Takashi DANJO, Satoru KAWASAKI and Toshiro HATA

There are very few reports about physical and mechanical properties of beachrocks in the world. To obtain the properties of beachrocks, we performed a series of in-situ tests and laboratory tests for beachrocks in Okinawa Island. As a result, it was shown that unconfined compression strengths of the beachrock samples obtained from three testing sites A, M and G were about 11 MPa, 20 MPa and 42 MPa, respectively. and it was found that there was a relationship like $q_u \approx 0.0158$ t between unconfined compression strength, q_u (MPa), and radiocarbon age, t (yBP). Moreover, the formation of beachrock may be controlled by the presence of microbes.