岩盤斜面の地震時安定性に関する 複合降伏モデルの適用性

黒岡 浩平¹*・広兼 修治¹・谷田 哲也¹・岩田 直樹²・片山 吉史²・笹井 友司²

¹中国電力(株) 電源事業本部 耐震土木担当(〒730-8701広島市中区小町4-33) ²中電技術コンサルタント(株) 原子力プロジェクト室(〒734-8510広島市南区出汐2-3-30) *E-mail: 358524@pnet.energia.co.jp

岩盤斜面の地震時安定性は、岩盤内に分布する不連続面の分布や力学特性に大きな影響を受けるが、一般的に不連続面を考慮しない解析法により評価されている。そこで本研究では、弱層を有する実斜面を対象として、水平および鉛直震度を作用させた場合の挙動について、岩盤の不連続面の分布や変形特性の非線形性を考慮できる複合降伏モデルを用いた解析を行い、不連続面を考慮しないモデルとの比較を行った。この結果、弱層を通るすべり線に対するすべり安全率は、複合降伏モデルと不連続面を考慮しないモデルでほぼ同程度となり、当該斜面のように弱層を有する岩盤斜面では、弱層の挙動が支配的であるため不連続面を考慮しないモデルで評価しても問題ないことを確認した。

Key Words : seismic stability, FEM, Multiple Yield Model, scale effect, rock slope, seam

1. はじめに

一般に、硬質岩盤上に建設される原子力発電所の基礎 地盤および周辺斜面の安定性検討に当たっては、岩盤変 形試験・原位置せん断試験等の原位置岩盤試験に基づく 強度特性および変形特性を用いた有限要素法による連続 体解析が実施されており、その場合、断層、破砕帯など の規模の大きい不連続面は考慮されるが、節理などの不 連続面は考慮されていない.また、解析に用いる岩盤物 性値は原位置岩盤試験により設定されるが、標準的な原 位置岩盤試験の試験面は0.5m²以下であり、不連続面の 間隔が試験面より密な場合は岩盤物性に不連続面の影響 も考慮されるが、不連続面の間隔が試験面よりも大きい 場合には、岩盤物性に不連続面の影響が考慮されない.

こういった問題に対して,野口ら¹は原子力発電所建 設に伴う本館基礎掘削工事において,岩盤不連続面の変 形特性の拘束応力依存性や非線形性を考慮できる有限要 素法による等価連続体解析の一種である複合降伏モデル

(the multiple yield model,以下MYMと呼ぶ)²を用いた掘 削壁の挙動予測解析により土留工の合理的な設計を行う とともに,解析結果をもとに施工時の管理基準値を設定 し計測管理を行った.また,吉中ら³は複数の岩盤の大 規模鉛直掘削を対象として,岩盤不連続面の分布と寸法 効果を考慮した物性値を用いたMYMによる解析結果を 計測値と比較し、不連続面を考慮した解析を行うことに より実挙動を精度よく予測できることを示した.

本研究では、不連続面が地震時の岩盤斜面に与える影響を把握するため、ボーリング供試体を用いた不連続面の試験を実施し、試験結果より不連続面の変形および強度特性を把握するとともに、MYM を用いて水平および 鉛直震度を作用させた静的解析を実施し、原位置岩盤試験結果より岩盤物性を設定した不連続面を考慮しないモデル(以下,弾性体モデルと呼ぶ)との比較を行った.

2. 解析理論の概要

(1) 岩盤の変形特性

MYMは佐々木ら(1994)²により提案されたモデルであ り、有限要素法の構成則に弾性コンプライアンスを適用 することにより、式(1)に示すように岩盤の総ひずみ $\{\varepsilon_{T}\}$ を母岩のひずみ $\{\varepsilon_{R}\}$ と複数の節理群のひずみ $\{\varepsilon_{L}\}$ の 和で表現されるものと仮定している.

$$\{\varepsilon_T\} = \sum \{\varepsilon_I\} + \{\varepsilon_R\} \tag{1}$$

ここで,各節理群は周期的に存在し,それらの体積が母 岩に比較して無視できるものと仮定し,母岩の応力と節 理群の応力は等しいものとすると,岩盤の総ひずみは次 式で表すことができる.

$$\{\varepsilon_T\} = [\sum [F_I] + [E]^{-1}] \cdot \{\sigma\} = [C] \cdot \{\sigma\}$$
(2)

ここに、 $\{\varepsilon_T\}$: 岩盤の総ひずみベクトル、 $\{\sigma\}$: 総応力 ベクトル、[E]: 等方弾性体の応力-ひずみマトリック ス、 $[F_I]$: 節理群のコンプライアンスマトリック ス、[C]: 母岩と節理群の和のコンプライアンスマトリ ックスである.

(2) 節理群の降伏条件

式(3)に示すMohr-Coulombの降伏条件を節理群に用いる.

$$F_{S} = |\tau_{S}| / (C + \sigma_{n} \tan \phi_{j})$$
(3)

ここに, F_s :破壊接近度, τ_s :不連続面のせん断応力, σ_n :不連続面の垂直方向応力, C:不連続面の粘着力, ϕ_J :不連続面の摩擦角である.

(3) 節理群の変形特性

不連続面の垂直剛性 K_nは式(4)に示す Bandis らの提案 式による双曲線型の変形特性⁴を用いた.

$$\mathbf{K}_{n} = \mathbf{K}_{ni} \left[1 - \frac{\sigma_{n}}{\mathbf{V}_{m} \mathbf{K}_{ni} + \sigma_{n}} \right]^{-2}$$
(4)

ここに, K_n : 初期垂直剛性, V_m : 不連続面の最大閉合 量, σ_n : 不連続面の垂直応力である.

不連続面の垂直方向の繰返し載荷試験では、図-1 に 示すように除荷過程においても非線形性を示し、残留変 形を生じる.任意の拘束圧 σ_{ni} における不連続面の閉合 量を V_i とし、これを弾性変形 V_{ei} と塑性変形 V_{pi} の和と して式(5)で表し、弾性変形 V_{ei} は式(6)に示す最大閉合量 V_m の二次関数で定義する.除荷時の変形特性は、この 弾性変形 V_{ei} を Bandis の提案式の除荷特性に付加した⁵.

 $\mathbf{V}_{i} = \mathbf{V}_{ei} + \mathbf{V}_{pi} \tag{5}$

図-1 不連続面の垂直方向の変形特性

また、不連続面のせん断剛性 K_sは式(7)に示す Kulhawy の提案式による双曲線型の変形特性⁶を用いた.

$$\mathbf{K}_{s} = \mathbf{K}_{si} \left(\frac{\sigma_{n}}{p_{a}}\right)^{nj} \left(1 - \frac{\tau_{s} \cdot \mathbf{R}_{f}}{\tau_{p}}\right)^{2}$$
(7)

ここに、 K_{si} :初期せん断剛性、 σ_{n} :不連続面の垂直応 力、 p_{a} :大気圧、 τ_{p} : *C*、 ϕ_{J} により計算されるせん断 強度、 τ_{s} : せん断応力、nj:剛性係数、 R_{f} :破壊比であ り一般的に 0.7~0.9の係数である.なお、一般的に係数 nj、 R_{f} は不連続面のせん断試験結果をもとに設定される.

不連続面のせん断方向の繰返し載荷試験においても, 図-2に示すように除荷過程で残留変形が生じる. 垂直方向と同様に,任意の拘束圧 τ_i における不連続面のせん 断変位U_iを,弾性変形U_aと塑性変形U_pの和として式(8)で 表し,弾性変形U_aは式(9)に示す破壊接近度 τ / τ_p の二次 関数で定義する.除荷経路の変形特性は,単純化のため に線形とした⁵.

$$U_{i} = U_{ei} + U_{pi}$$
(8)

$$\mathbf{U}_{ei} = \mathbf{U}_{i} \left(1 - \frac{\tau_{i} \cdot \mathbf{R}_{f}}{\tau_{p}} \right)^{2}$$
(9)

3. 岩盤不連続面のモデル化と解析用物性値の設定

(1) 地質区分⁷⁾

図-3 に対象とする岩盤切取斜面の地質断面図を示す. 当該斜面は、平均法勾配が 1:2 であり、法面最上部から最下端の法尻までの高低差が約 100m となる長大斜面である.地質は、新第三紀中新世の堆積岩および貫入岩から構成され、堆積岩は、10°~20°Nの同斜構造をなし、法肩付近は背斜軸の影響で地層の傾斜が急勾配となる特徴を有する.電研式岩盤分類を基本とした岩級区分によると、切取面から深度 30~40m 程度までは風化により C_L~D 級岩盤が分布するが、大半は C_H級~C_M級である.堆積岩は、頁岩類(黒色頁岩、凝灰質頁岩)およ

図-2 不連続面のせん断方向の変形特性

図-3 地質断面図

表-1	解析用物性值
-----	--------

岩級・岩種			C _H 級			C _M 級			CL級		
			頁岩類	火砕岩類	貫入岩	頁岩類	火砕岩類	貫入岩	頁岩類	火砕岩類	貫入岩
単位体積重量γ(kN/m ³)			25.4	24.2	26.3	25.3	23.1	26.3	25.3	22.5	25.4
弾性体	弹性係数 E (×10 ³ N/mm ²)		5.97	8.55	10.72	1.59	1.76	1.91	0.78	0.86	0.93
	ポアソン比v		0.19	0.16	0.25	0.20	0.17	0.25	0.27	0.27	0.27
	せん断強度 $\tau_o(N/mm^2)$		1.64	1.68	2.01	0.74	0.76	0.91	0.49	0.51	0.61
	内部摩擦角 ϕ (°)		53	57	58	44	47	48	44	47	48
M Y M	不連続面間隔 (m)		1.22	7.69	6.55	0.38	7.69	2.05	0.16	0.85	0.88
	母岩	寸法効果による低減率	0.35	0.25	0.25	0.50	0.25	0.30	0.65	0.40	0.40
		せん断強度 $\tau_o(N/mm^2)$	8.21	3.65	7.37	6.90	1.50	5.73	5.99	1.23	5.36
		内部摩擦角 φ (°)	40	40	40	35	35	35	35	35	35
		弹性係数 E (×10 ³ N/mm ²)	7.17	2.41	6.42	7.80	0.84	6.32	3.19	0.78	5.48
		ポアソン比ν	0.19	0.16	0.25	0.20	0.17	0.25	0.27	0.27	0.27
	不連続面	せん断強度 τ_p (N/mm ²)	$0.73 \sigma^{0.75}$	$0.67 \sigma^{0.70}$	$0.57 \sigma^{0.75}$	$0.87 \sigma^{0.75}$	$0.67 \sigma^{0.00}$	$0.68 \sigma^{0.75}$	$0.56 \sigma^{090}$	$0.63 \sigma^{0.00}$	$0.43 \sigma^{0.90}$
		初期垂直剛性 Kni (MN/m³)	155.8	16.9	29.0	500.7	16.9	92.7	1,956.0	164.6	255.3
		初期せん断剛性 K _{si} (MN/m ³)	268.1 σ ^{0.70}	$136.3 \sigma^{045}$	$109.3 \sigma^{0.00}$	$500.2 \sigma^{0.00}$	$136.3 \sigma^{045}$	$203.2 \sigma^{0.00}$	790.0 σ ^{0.70}	$441.8 \sigma^{0.45}$	319.3 σ ^{0.70}
		剛性係数 nj	0.7	0.45	0.45	0.7	0.45	0.45	0.7	0.45	0.45
		破壞比 Rf	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
		最大閉合量(mm)	1.1	2.1	1.6	0.7	2.1	1.2	0.6	1.1	1.1

※ 不連続面のせん断強度,初期せん断剛性で用いているσは不連続面の垂直応力を示す.

び火砕岩類(凝灰岩,火山礫凝灰岩,凝灰角礫岩)から 構成され,頁岩類の境界の一部に厚さ 3cm 程度以下の 弱層を挟在する.

(2) 岩盤不連続面の分布

不連続面のモデル化は $C_H \sim C_L$ 級岩盤について行い、D 級岩盤は不連続面が認識できないことから等方弾性体と して扱う.

図-4は試掘坑壁の節理調査とボーリング孔のBTVによ る調査結果から整理した節理のステレオ投影図(下半径 投影)を示す.試掘坑壁(延長890m)では,低角度節理は 発破掘削の影響を受けて層理面が分離したものも含んで いるため,60°を超える高角度節理(532本)のみを抽出し, ボーリング孔(延長143m)については,BTVのデータを用 いて低角度の節理(209本)のみを抽出した.ステレオ投影 図に見られる通り,節理はバラツキが少なく集中度が高 い層理面方向と層理面に直交する2系列が存在する.

層理面沿いの不連続面の間隔は、ボーリング孔の全延 長1.200mを岩種(頁岩類、火砕岩類および貫入岩)・岩

図-4 節理面のステレオ投影図

級ごとに算定した節理の本数で割ることにより算定を行い、層理面方向と層理面直交方向の節理間隔が等しいものと仮定した.

(3) 解析用岩盤物性値

表-1に解析用物性値を示す.

不連続面を考慮しない弾性体モデルの物性値は,岩盤 変形試験およびブロックせん断試験をもとに設定した⁷.

図-7 不連続面の面積設定の考え方

MYMの不連続面の物性設定にあたっては,直接せん 断試験装置[®]を開発し,供試体による一面せん断試験お よび垂直載荷試験を行い,この結果に寸法効果による物 性低下を考慮して設定を行った.試験は,黒色頁岩およ び火山礫凝灰岩の2岩種について割れ目状態α(新鮮), β(褐色化)の異なる不連続面を対象にφ50mm および φ100mmのコアを採取して実施した.試験より求まる 不連続面の初期垂直剛性と初期せん断剛性を吉中ら⁹の 不連続面の剛性と面積の関係のグラフにプロットしたも のを図-5 および図-6 に示す.既往試験に基づくトレン ドラインを参考に各不連続面の面積一剛性の関係を設定 し,図-7 に示す不連続面で区切られる立方体の表面積 と不連続面の面積-剛性の関係より不連続面の初期剛性 を設定した.

母岩の物性設定は、一軸圧縮試験結果に基づき、母岩の強度の寸法効果¹⁰を考慮して岩種・岩級ごとに低減率 を算定し、これを強度のみならず変形特性にも適用し設 定を行った.ここで寸法効果に用いる面積比は、一軸圧 縮試験の供試体 φ 50mm の面積と不連続面の寸法効果で 用いた不連続面の面積の比とした.この結果、不連続面 の間隔が大きい岩盤ほど強度および変形特性の低減率は 大きく、C_H級の火砕岩類では、岩石試験結果の 25%に

図-6 不連続面のせん断剛性に対する寸法効果

図-8 解析モデル図

まで低減する.

4. 解析内容

解析モデルは、地質断面図をもとに図-8に示す幅 620m、深さT.P.-215mまでの範囲を対象に、岩盤は平面 ひずみ要素、弱層はジョイント要素でモデル化を行った. 岩盤の初期応力は等方応力状態と仮定し、自重計算に より初期応力を設定した後、掘削解析、水平および鉛直 震度を作用させた静的解析を行った.地震力は水平震度 0.3G、鉛直震度0.15Gとし、各震度を30分割し交互に所 定の地震力まで作用させる.境界条件は、底面は固定、 側方は初期応力解析、掘削解析および鉛直震度作用時は 鉛直ローラー、水平地震力作用時は水平ローラーとした.

5. 解析結果

(1) 不連続面の剛性分布および岩盤物性

地震時の層理面方向の不連続面の垂直剛性およびせん 断剛性の分布を図-9に示す.垂直剛性は、全体的には表 層からの土被りに応じた分布となり,岩種ごとにみる と不連続面の間隔の大きい火砕岩類が頁岩類に比べて やや剛性は大きくなる.また,斜面中腹部の地層傾斜 角が大きいところには,不連続面の垂直応力が小さく なるため剛性が小さくなる領域が発生する.一方,せ ん断剛性は,拘束圧依存性が垂直剛性ほど大きくない ため土被りによる剛性の増加は顕著ではないが,岩種 ごとにみると,垂直剛性と同様に不連続面の間隔が大 きい火砕岩類および貫入岩の剛性が大きくなる.なお, こういった傾向は層理面直交方向の不連続面も同様で あるが,斜面中腹部の地層傾斜角が大きいところでは, 層理面方向とは逆に垂直応力が大きくなるため剛性が 大きく設定される.

図-10 に MYM と弾性体モデルの地震時の岩盤のせん 断剛性分布図を示す. 母岩の剛性と不連続面の剛性の 足し合わせにより評価される MYM の岩盤物性は,表 層付近の C_M , C_L 級岩盤では弾性体モデルと同程度の剛 性となるが, C_H 級岩盤では寸法効果により弾性体モデ ルよりも小さな剛性となり,土被りや地質条件に応じ て滑らかに変化する分布となる.このため,弾性体モ デルの斜面部で貫入岩により帯状に発生していた剛性 の高い領域がなくなり,急激な剛性のコントラストが 生じなくなる.また,弾性体モデルの剛性が MYM よ り大きくなっている点は,弾性体モデルの物性設定で 用いられている岩盤変形試験の載荷面積が不連続面の 間隔よりも小さいため,寸法効果により剛性が高く評 価されるとの考え方とも一致する.

(2) 発生応力およびすべり安全率

図-11 に MYM と弾性体モデルの応力差の分布図を示 す. なお, MYM の応力が弾性体モデルより大きい場合 は正の値となり,小さい場合は負の値となる. MYM に よる岩盤の主応力は,弾性体モデルに比べ表層付近と 不連続面の間隔の大きい火砕岩類および貫入岩で小さ くなっている. これは, MYM による火砕岩類の剛性が, 拘束圧の小さい表層付近で弾性体モデルよりも小さく なるため,弾性体モデルにおいて剛性の高い火砕岩類 および貫入岩に集中していた応力が,周辺岩盤に配分 されるためである. なお,弱層については元来周辺岩 盤に比べて剛性が非常に小さいことから,多少周辺岩 盤の剛性に違いが生じても,発生する応力に大きな変 化は見られない.

すべり安全率は, MYM と弾性体モデルともに図-12 に示す斜面内に分布する弱層を通り法尻に抜けるすべ り線-1 で最小となるが, 弾性体モデルでは 1.80 である のに対し MYM では 1.75 とほぼ同程度の安全率となっ ている. この傾向は, 他の弱層を通るすべり線につい

図-9 地震時の層理面方向の不連続面の剛性分布

図-10 MYM と弾性体モデルの岩盤のせん断剛性の比較

図-11 MYM と弾性体モデルの発生応力差

図-12 すべり線図

ても同様である.このことは、周辺岩盤の剛性に違いが 生じても、弱層に発生する応力に大きな相違がないこと が原因である.一方、図-12 に示すすべり線-2 のように 岩盤を通る部分が多いすべり線については、MYMと弾 性体モデルでは岩盤の応力状態が異なるため、弾性体モ デルでは 2.68 に対し MYM では 2.92 とやや異なった安全 率となるが、大部分が弱層を通るすべり線に比べると安 全率は大きくなる.

上記のケースは,層理面方向と層理面直交方向の不連 続面の間隔を同一と仮定した場合の結果であるが,別途, 不連続面の間隔の違いによる影響についても比較検討を 行ったが,弱層を通るすべり線のすべり安全率はいずれ のケースもほぼ同様の結果となった.

6. おわりに

本研究では、岩盤内に分布する不連続面が長大斜面の 地震時挙動に与える影響を明らかにするため、室内岩石 試験により不連続面の変形特性および強度特性を把握す るとともに、母岩と節理の特性を個別にモデル化するこ とが可能な複合降伏モデルを用いた有限要素法による解 析を実施し、原位置岩盤試験結果による物性値を用いた 不連続面を考慮しない弾性体モデルとの比較を行った. その結果、以下の結論が得られた.

- (1) MYMの岩盤の剛性分布は概ね深度に応じた滑らか な分布となり、弾性体モデルと比べると剛性のコン トラストが小さい.
- (2) MYMの岩盤の応力は,弾性体モデルと異なる分布 となるが,弱層の応力については大きな違いは生じ ない.
- (3) 当該斜面のような弱層が分布する斜面では、弱層沿いのすべり安全率は弾性体モデルと同程度となる.
- (4) 弱層を有する斜面においては、不連続面を考慮しな

いモデルによりすべり安全率に対する地震時安定性 を適正に評価できる.

なお、今後は不連続面の非線形性が顕著になる大きな 地震力を作用させた場合や、動的に地震動を作用させた 場合についても同様の傾向が得られるかを検討する必要 があると考えている.

参考文献

- 1) 野口雅之,杉原聡,石森慎一郎:島根原子力発電所3号 機本館基礎掘削工事における土留め工の設計・施工,電力土木 No.334, pp.115~120, 2008.
- 2) 佐々木猛,吉中龍之進,永井文男:有限要素法による節理 性岩盤の複合降伏モデルに関する研究,土木学会論文集, No.505/III-29, pp.59-68, 1994.
- 3) 吉中龍之進,岩田直樹,佐々木猛,佐々木勝司,吉田淳: 岩盤の大規模鉛直掘削に伴う壁面変位の挙動の考察,第12 回岩の力学国内シンポジウム講演論文集,pp.833-840,2008.
- Bandis S. C., Limsden A. C. and Barton, H. R. : Fundamentals of rock joint deformation, *Int. J. Mech. Min. Sci. & Geomech.* Abstr., Vol. 20, No. 6, pp. 249-268, 1983.
- Sasaki T., Yoshida J., Sasaki K., Yoshinaka R., Iwata N. : Parameter studies of a plate-loading test of jointed rock mass by Multiple Yield Model, *ISRM Symposium & 3rd Asia Rock Mechanics Symposium*, Millpress, pp.1153-1158, 2004.
- Kulhawy F. H. : Stress-deformation properties of rock and discontinuities, *Engng. Geol.* 8, pp. 327-350, 1975.
- 7)中国電力株式会社:島根原子力発電所原子炉設置変更許可申請書(1号及び2号原子炉施設の変更並びに3号原子炉の増設), pp.6(3)-3-112-6(3)-3-126, 2005.
- 8) 吉田淳,国西達也,家島大輔,永瀬昌宏,曽我部淳,佐々木 勝司:岩盤不連続面の力学特性評価のための直接せん断試 験装置の開発,第40回地盤工学研究発表会平成17年度発 表講演集,pp.557-558,2005.
- 9) 吉中龍之進,吉田淳,佐々木猛,佐々木勝司:寸法効果を 考慮した岩盤不連続面の設計用物性値の設定,土木学会論 文集C, Vol.62 No.2, pp.457470, 2006.
- 10) 岩盤上の大型構造物基礎,土木学会 岩盤力学委員会 大型 構造物基礎小委員会, pp. 36, 1998.

APPLICABILITY OF MULTIPLE YIELD MODEL TO SEISMIC STABILITY OF ROCK SLOPE

Kohei KUROOKA, Syuuji HIROKANE, Tetuya TANIDA, Naoki IWATA, Yoshifumi KATAYAMA, Yuuji SASAI

This paper describes the comparison of elastic model and the Multiple Yield Model (MYM) that could consider a non-linear deformability characteristic of a discontinuous plane, on seismic stability of the discontinuous rock slope with seams. In the modeling of joints, analysis parameters are based on the results of geological investigations and laboratory joint tests and joint stiffness is decided considering the scale effects. As a result, seismic stability of slope with seams depends on the behaviour of seams and the safety factors of slip lines through seams calculated by MYM are the same as the ones of elastic model with seams.