高レベル放射性廃棄物処分施設周辺の力学的挙動に 関する実験的研究 一遠心載荷模型実験とX線CT撮影一

西本 壮志¹*・岡田 哲実¹・澤田 昌孝¹・荒井 郁岳²

¹(財)電力中央研究所地球工学研究所(〒270-1194千葉県我孫子市我孫子1646)
²(株)ジオデザイン(〒108-0023東京都港区芝浦3-14-6 バリュー芝浦ビル)
*E-mail: soshi-n@criepi.denken.or.jp

高レベル放射性廃棄物(HLW)の地層処分施設の周辺(ニアフィールド)の長期力学挙動評価のために、本研究では遠心載荷装置を用いたニアフィールド模型実験を行った.また、実験終了後、X線CT装置を用いて模型供試体の内部構造を把握した.縮小模型供試体は模型処分孔を空けた岩盤、ベントナイト、模型オーパーパックー対から成り、圧力容器に封入された後、所定の地圧を付与し30 Gの遠心場において透水試験を行った.その結果、実寸法換算年で30~100年後において、膨潤圧は1.5~1.6 MPa、オーバーパックの実寸法換算沈下量は2 mm程度であった.また、X線CT撮影により、ベントナイトの膨潤により実験前に存在した隙間が埋まっていることが観察された.

Key Words : centrifuge, X-ray CT, high-level radioactive waste, model test, geomechanical propertiy

1. はじめに

高レベル放射性廃棄物(HLW)の地層処分施設の周辺(ニアフィールド)は従来の地下施設と大きく異なり, 地下300m以深の大深度に大規模施設を建設する.加え て、ニアフィールドでは非常に長い期間にわたり、廃棄 体の発熱,地下水の再冠水、ベントナイト緩衝材・埋戻 し材の膨潤,岩盤の変形などが発生する¹⁾.そのため, 処分施設の性能評価上,例えば1000年後の緩衝材の厚 みが安全基準通りに担保されるかどうか、クラック等の 進展による核種移行経路に対する影響の有無などの、ニ アフィールドにおける長期の挙動評価が必要になる.一 方で、場所や時間・経済的制約から実物大の実証試験例 は極めて少なく²⁾、長期の挙動予測には数値解析による 研究に依存せざるを得ないのが現状である³.

HLW ニアフィールドは金属製のオーバーパック,粘 土であるベントナイト緩衝材,それらを封入する岩盤と いう異種複合材料で構成され,熱・水・応力等の連成相 互作用を生じる極めて複雑な環境下にある.このため, 長期挙動評価を行う数値解析モデルでは,そのパラメー ターやモデルの妥当性検証が必要不可欠である.この妥 当性の検討には,物理モデルを設定しやすい室内実験, すなわち,ニアフィールドを構成する様々な材料を用い た評価試験を行う必要がある. 例えば、ベントナイトの 厚みの変化やクラックの伸展等による地下水の流れに悪 影響を与える現象はバリア性能に大きく影響すると考え られるため、ニアフィールドを構成する廃棄体、ベント ナイト緩衝材、周辺岩盤が力学的にどのような状態にあ るか、その長期挙動を実験的に把握することは非常に重 要である. そこで本研究では、ニアフィールドの長期力 学挙動の把握・評価を行うことを目的として、遠心力載 荷装置を用いた縮小模型実験を行い、岩盤のひずみ、ベ ントナイトの膨潤圧,模型オーバーパックの沈下量を測 定した. 遠心加速度を付与することによる自重応力・時 間相似則を利用すれば、処分孔周辺を模擬した縮小模型 供試体に対して、短時間でオーバーパックの沈下量の把 握や緩衝材の膨潤の評価等の実物大と相似な位置の長期 の力学的評価試験を行うことができる.また、試験終了 後,供試体内部を把握するために X線 CT 撮影を行った. 本研究により、HLW 処分場の長期安全評価の信頼性向 上のための基礎的なデータを提供できると考えられる.

2. 模型供試体および試験装置

(1)模型供試体

本研究で用いた処分孔模型供試体は、処分孔周辺の岩

図-1 実験に使用した模型供試体の平面・断面図およ びセンサーレイアウト.

盤部および処分孔内の緩衝材部・廃棄体部から成る縮小 模型である(図-1).模型供試体は,電中研・電事連 共同研究報告書⁴⁾において提案されている処分孔サイズ の約1/30の大きさである.すなわち,模型廃棄体(オー バーパック)は直径27.3 mm,高さ62 mm,処分孔部は直 径約54 mm,高さ127 mmである.処分孔模型において, 岩盤部は180 mm円柱状の田下凝灰岩を使用した.田下 凝灰岩(大谷石)は,乾燥密度,湿潤密度はそれぞれ, 約1.25 g/cm³, 1.58 g/cm³であり,一軸圧縮強さは33 MPa (気乾)および16 MPa(湿潤)である⁵.緩衝材および 埋め戻し材には圧縮ベントナイト (クニゲルV1) を用 い, 膨潤後目標密度を1.55 g/cm³ (初期乾燥密度は1.74 g/cm³) になるように圧縮した. 模型廃棄体はバルク密 度が6.16 g/cm³となるように, ステンレス鋼材 (SUS430) にエポキシ樹脂を被覆し調整してある. エポキシ樹脂の 厚さは2mm程度である.

(2) 遠心載荷岩盤実験装置および圧力容器

高レベル性放射性廃棄物地層処分ニアフィールドの力 学的な諸現象解明のために、(財)電力中央研究所では超 長期遠心載荷岩盤実験装置("CENTURY5000-THM": Centrifugal Test equipment for Ultra-long time Range of 5000 Years: simulating coupled Thermo-Hydro-Mechanical processes) $\pounds 2009$ 年3月に導入した(図-2).本装置は、回転アームが4 柱ビーム式(試料搭載側,カウンターウエイト側固定), 総重量約80 t, 最大有効回転半径3.2 mの装置であり, 直 径約10mのコンクリートピット内に格納されている.本 装置で付与することの出来る最大遠心加速度は静的条件 で100 G (167.2 mm) である. 試料を搭載するプラット ホーム面積は2.64 m² (1.60 m×1.65 m) と同様のサイズの 遠心載荷装置と比較して非常に広く、大型の試料の搭載 が可能である. プラットホームには最大150 G・ton (100 G時に最大1.5 ton) 搭載でき,任意の遠心加速度で着座 できる油圧着座方式を採用している. バランス機構は, 長期間の運転を考慮し複雑な制御を行わない手動カウン ターバランス方式を採用している. 中心回転軸の上端に は動力用スリップリング(4極AC200V/60Aおよび2極 AC100V/60A),制御用スリップリング(17極),通信 用無線LAN機器(2セット),油圧・水圧・空圧を付与

図-2 本実験で用いた遠心載荷装置, CENTURY5000-THMの概略図.

できるロータリージョイント(各2ポート)が設置され おり,機外から回転体内部へ電力や油圧等を供給できる ようになっている.また,圧力容器の応力制御のために, 回転軸付近のアーム上面に増圧機4台を搭載している. 増圧機の制御および実験データは無線LANを通じて計測 室内のPCで制御・保存する.

本装置の最大の特徴は、最長6カ月間連続運転ができ る仕様である(既存の同規模の遠心載荷装置は通常数時 間程度).また、長期運転を行うことから、装置を格納 しているコンクリートピット内は空気抵抗による温度上 昇を防止するために大型空調設備による温度一定制御が 可能で、加えて、本体装置の瞬停対策用電源装置も備え ている.

また、本研究では供試体に地圧相当の応力を負荷する ために、「18 cm円柱用圧力容器」を用いた(図-3). この圧力容器はジュラルミン製で、約50 kgの重量、拘 束圧(周圧)は水圧、軸圧はピストン構造(下部架台を 水圧により作動させる)による負荷の三軸タイプで、最 大10 MPaの等方圧を負荷できる.圧力容器の下端・上端 にそれぞれ注水・排水用ポートが設けられており、供試 体にメンブレンゴムスリーブを被覆することによって透 水試験が可能である.容器内部下端には、耐圧用のフィ ードスルー(6極/10個)が設置され、ひずみゲージ等を 接続し、外部に設置しているロガーに接続できるように なっている.容器上蓋内部にはギャップセンサーと土圧 計が組み込まれている.

遠心載荷模型実験を行う意義は大きくは2つあり、模型に遠心加速度を付与することで、縮尺模型上で(1) 実物と等価な自重応力状態の再現、(2) 圧密や、ダル シー則を満たすような透水現象などを時間短縮して室内 実験で再現、という相似則が成立することである.

図-3 実験に使用した圧力容器の断面図.

1 つめの地盤中の自重応力状態を再現するのは、自重 応力による地盤内の密度分布、水圧のヘッド差の違いな どを考慮するためである.岩盤・土質材料の強度・変形 特性は、供試体に作用する応力に依存するため、模型と 実物の応力状態を同一にすることは重要である.幾何学 的に 1/n に縮尺した小型模型に n G の加速度場を与える ことにより実物と同じ自重による応力場を模型に再現す ることが可能となる.応力場の再現により、粒子レベル での挙動、模型全体での挙動が実現象と模型とで相似性 が成立する.ただし本研究では、地表から地下深部の処 分施設までの全体を模型供試体とするのではなく、処分 孔周辺のみを模型としているため、かぶり圧や地圧相当 の応力は圧力容器による応力負荷で担保し、処分孔周辺 の自重応力の相似則を考えている.

2つめの時間短縮とは、ダルシー則が成立するような 非常に緩やかな地下水の流れなどの、地盤中を浸透する 水の流れを時間短縮して再現する. 簡単には時間短縮と は、地盤中のゆっくりした水の浸透、圧密、膨潤等のゆ っくりとした水の流れで現象が支配されるものについて、 1/nに縮尺した小型模型にn Gの遠心加速度を与える. こ れにより、距離が1/n、現象の速度がn倍になるために、 時間が1/n²に縮尺されることになるという、現象の時間 を短縮している.

詳細については、既報を参照されたい[®]. 表-1に本実 験における相似則を示す.

物理量		相似則
長さ	L _m /L _p	1/n
面積一人	A _m /A _p	$1/n^{2}$
体積	V_m/V_p	1/n ³
応力 。	σ_m/σ_p	1
ひずみ	$\varepsilon_m/\varepsilon_p$	1
間隙流体の速度	υ _m /υ _p	п
圧密・膨潤・透水時間	T_m/T_p	$1/n^{2}$

表-1 本遠心実験における相似則.

※添え字の*m*, *p*は, それぞれ模型(model), 実物(plototype) を表す.

(3)X線CT法

X線CT法は、X線CTスキャナーを用いて様々な光路で 試料にX線を入射させ、透過したX線の強度を測定する. X線が試料を透過する時、X線の強度Iは、

$$\frac{I}{I_0} = \exp\left[-\left(\frac{\mu}{\rho}\right)t\right] \tag{1}$$

で表される.ここで、 I_0 は入射するX線強度、 μ は測定物 質のはX線の線吸収係数、 ρ は密度、tはX線が通過する 測定物質の厚さである. $\mu\rho$ は質量吸収(減衰)係数と 呼ばれ、ある入射X線波長に対して物質ごとに固有の値 をもつ.それらのデータをもとに試料内部のX線吸収係 数の空間分布を二次元断面の積み重ねから三次元的に可 視化することが可能であり、非破壊で試料の空間的分布 特性を把握できる技術として非常に優れている⁷⁹.

X線CTで得られた試料の断面はCT画像として得られる. CT画像は,最小構成要素(ボクセル:voxel)から 構成され,各ボクセル内にCT値が格納される. 各ボク セルに白黒の濃度差を与えることで,目的の領域のコン トラストを得ることができる. X線吸収係数は式(1)から, 物質の密度にほぼ比例するため,得られるCT値も密度 に比例すると考えることができる⁷. CT画像では密度の 大きい物質は白く,小さい物質は黒く表示される.

本研究におけるX線CT装置による撮影は,寝台が移動 し対象物の周囲をX線入射装置が螺旋状に回転しデータ を取得する医療用ヘリカルCTスキャナ(Aquilion64 TSX-101A)を使用しCT画像を取得した. Aquilion64は同時に 64列の断面データを収集でき,空間分解能は最小で0.35 mm,スキャンに要する時間は,試料の大きさにもよる が数秒程度である.また,ガントリー開口径は72 cmで 最大撮影領域径は50 cm程度である.スキャン時のX線出 力(管電圧・管電流)は135 kV・350 mAである.

3. 結果および考察

(1) 長期遠心模型実験

遠心載荷模型実験において、ベントナイトの上端に設置した土圧計およびギャップセンサーで、ベントナイトの膨潤圧、オーバーパックの沈下量を測定した(図-1).また、岩石試料にはひずみゲージを貼付し、ひずみを測定した.実験は、遠心加速度30 G場で等方圧条件とし、それぞれ2、5 MPaの拘束圧を負荷した.透水試験のための注水圧は全水頭の半分(拘束圧の半分),背圧は0.5 MPaとして一定制御し、供試体下面より注水した. 温度は25℃一定である.実験は、所定の拘束圧を負荷し 圧密によるひずみが収束した後、遠心加速度を付与、所定の遠心加速度に到達した後、注水を開始した.

TG-01 (拘束圧 $\sigma_{xyz}=2$ MPa, 注水圧 $U_{zl}=1$ MPa, 背圧 U_z=0.5 MPa) では、13日間の実験を行った. TG-01にお いて、ベントナイトの膨潤圧は約30時間経過時まで急激 に上昇した(図-3). その後、約160時間経過時までほ ぼ一定の値を示したが、その後再度急激に膨張を示し、 230時間経過時以降若干の減少の傾向を示した. この間 の最大膨潤圧は1.62 MPaであった. オーバーパックの変 位量(ギャップセンサー)は、30時間経過時までは上昇 を示したが、その後は段階的に沈下の傾向を示した(図 -4). この間の最大沈下量は、実寸法換算変位量にし て約1.4 mmであった. ひずみゲージの変化は、膨潤圧、

 図-5 TG-01におけるひずみの変化. プラスが膨張, マイナスが収縮を示す. (上)ゲージ①~④, (下)ゲージ⑤~⑧.

図-7 TG-03におけるオーバーパックの沈下量の変化.

沈下量と同様に、30時間経過時まで膨張の傾向を示し、
その後は一部のゲージを除きほぼ一定の値を示した(図
-5).また、160時間経過時以降、収縮の傾向を示した.

TG-03(拘束圧 σ_{xyz}=5 MPa, 注水圧 U_{z1}=2.5 MPa, 背圧 U_{z2}=0.5 MPa) では,数日の中断期間を挟んで34日間の実 験を行った.TG-03において,膨潤圧は120時間経過時ま で上昇を続け,その後はほぼ一定〜若干の減少示した (図-6).最大膨潤圧は1.52 MPaであった.オーバー パックの沈下量は,実験の初期段階で急激に沈下したが,

その後上昇し、50時間経過時以降はほぼ一定の値を示した(図-7). 沈下量は実寸法換算変位量にして、約2.5 mmであった. なお、TG-03ではひずみゲージの断線によりひずみデータを得ることが出来なかった.

中村・田中^{6 10}では、小型の遠心載荷装置を用いて遠 心場でベントナイトと模型オーバーパックを鋼製の容器 に封入したひずみ拘束の状態で注水試験を行い、ベント ナイトの乾燥密度の違いによるベントナイトの膨潤圧と オーバーパックの沈下量を測定している.彼らの結果に おいて、本研究で使用したベントナイト乾燥密度と近い 条件(1.54 g/cm³)では、ベントナイト膨潤圧が1.6 MPa 程度、オーバーパックの実寸法換算沈下量が1~2 mmで あり、本研究の結果は彼らの結果と調和的な値であった.

(2) X線CT撮影

実験前の撮影画像において、岩盤供試体、ベントナイ

図-8 TG-01における CT 画像(右肩) と CT 値. (上) 試験前,(下)試験後の CT 画像と CT 値.

図-9 TG-03におけるCT画像(右肩)とCT値. (上)試 験前,(下)試験後のCT画像とCT値.

ト,SUS製オーバーパック模型は明確に区別でき,その CT値は、岩盤部で約1000 Hu、ベントナイト部で1200 Hu、 オーバーパック部で約9000 Huを示している(図-8, 9).TG-01において、実験後はベントナイトとオーバー パックの間にあった空隙がベントナイトの膨潤によって 完全に埋まっている.CT値においても岩盤とベントナ イトの値がほぼ同じであった(図-8).一方で高い拘 束圧を与えたTG-03では、ベントナイトとオーバーパッ クの間に隙間が観察された(図-9下).これは、TG-03 ではより高い拘束圧を負荷しており、一つは模型供試体 を圧力容器から取り出す際に応力を解放した影響だと考 えられる.あるいはベントナイト緩衝材が完全に膨潤し ていないことが示唆される.また、CT値において、TG-01異なり、岩盤とベントナイトに100 Hu程度の差がある ことが確認できる(図-9下).

4. まとめおよび今後の課題

高レベル放射性廃棄物処分ニアフィールドの長期力学 的挙動を把握するために、本研究では処分孔周辺の模型 供試体を用い、遠心載荷実験を行った.その結果、ベン トナイトの膨潤、オーバーパックの沈下、岩盤のひずみ が観測され、実物換算年30~100年後で、膨潤圧は1.5~ 1.6 MPa、実寸報換算でベントナイトの厚さ400 mmに対 して沈下量は2 mm程度であった.このため等方圧条件 下ではオーバーパックは大きく沈下しないと予測される.

X線CT撮影により、供試体を構成するオーバーパック、 ベントナイト、岩盤を明確に区別することができ、ベン トナイトの膨潤により処分孔とベントナイトの間にあっ た隙間が埋まっていることが観察された.一方で、高い 拘束圧を与えたTG-03ではCT値からベントナイト緩衝材 が完全に飽和していない可能性がある.

現在,遠心加速度30 Gで換算年で100年程度の実験まで行っているが,土圧計やギャップセンサーのデータを 見る限り,未だ平衡状態に達していない.そのため,さ らに長期間の実験,あるいは高い遠心加速度を与えて可能な限り長期力学挙動の評価の必要がある.今後,50G を付与するさらに長期力学挙動を評価する試験,異方応 力条件における試験を予定している.

謝辞:本研究を行うに当たり、(財)電力中央研究所の上田 上席研究員,吉沢技術計測(株)の又吉技術員にはX線CT スキャナーの操作方法および有益なコメントをいただい た.感謝の意を表します.

参考文献

- 1) 新孝一,岡田哲実,中村邦彦,澤田昌孝,田中幸久:高レベル放 射性廃棄物処分施設のニアフィールドの力学的な長期挙動 評価技術,電力中央研究所総合報告,N02,2006.
- Svensk Kärnbränslehantering, A. B.: Äspö Hard Rock Laboratory -Annual report 2006, TR-07-10, 2007.
- 3)澤田昌孝、岡田哲実、西本壮志:スウェーデン・ハードロック 地下研究施設における高レベル放射性廃棄物処分のための 国際共同研究(その10) ーベントナイトの膨潤挙動に伴う 密度変化の数値解析による予測-,電力中央研究所研究報告 書,N09020,2010.
- 4) 電力中央研究所,電気事業連合会:高レベル放射性廃棄物地 層処分の事業化技術(概要版),195pp,1999.
- 5) 大久保誠介,福井勝則,杉田隆博:緩み領域の強度回復に関す る基礎検討,資源と素材,117,8,pp.631-638,2001.
- 6) 中村邦彦,田中幸久:高レベル放射性廃棄物処分孔での廃棄 体の沈下挙動-遠心模型実験と簡易沈下予測法の提案-,電力 中央研究所研究報告,U03074,2004.
- 7) 西澤修,中野司,野呂春文,稲崎富士:X線CTによる地球科学 試料内部構造分析技術の最近の進歩について,地質調査所月 報,46,pp.565-571,1995.
- 中野司,中島善人,中村光一,池田進:X線CTによる岩石内部 構造の観察・解析法,地質学雑誌,106,5,pp.363-378,2000.
- 10) 中村邦彦,田中幸久:高レベル放射性廃棄物処分孔でのオーバーパックの沈下挙動-ベントナイト種類の影響と沈下予測 手法の高度化-電力中央研究所研究報告,N05029,2006.

EVALUATION OF GEOMECHANICAL PROPERTIES IN HLW NEAR-FIELD FOR A LONG TERM - CENTRIFUGE AND X-RAY CT MODEL TEST-

Soshi NISHIMOTO, Tetsuji OKADA, Masataka SAWADA and Fumitaka ARAI

The objective of this paper is to evaluate the geomechanical properties of HLW near-field for a long term by the centrifuge and X-ray CT model test. The model specimen consists of rock mass, bentonite buffer and model waste. The specimen was enclosed with the pressure vessel and centrifuge model tests were conducted at 30 G of centrifugal force field with confining pressures and injection pressures. As results, 1.5~1.6 MPa for swelling pressure of the bentonite, approximately 2 mm for subsidence of the overpack, and strain of the bed rock were observed in 30~100 equivalent years. In the X-ray CT tests, the bed rock, bentonite and model waste were clearly distinguished in the CT images and it was observed that a gap between the disposal hole is buried by swelling of bentonite.