単一亀裂を対象とした一次元トレーサー試験 による亀裂内移流・分散およびマトリクス拡散 パラメータの評価方法

熊本 創^{1*}・下茂 道人¹

¹大成建設株式会社 技術センター (〒245-0051 神奈川県横浜市戸塚区名瀬町344-1) *E-mail: sou@ce.taisei.co.jp

堆積岩などの比較的多孔質な岩盤を対象としたトレーサー試験を行う際は、トレーサーの主要な移行経路となる亀裂内の移流・分散パラメータ(実流速、分散係数)に加え、亀裂から岩石基質部への拡散現象を支配するパラメータ(マトリクス拡散係数)の評価が求められる.しかし、一度のトレーサー試験結果から、これらのパラメータを同時に、かつ一意に評価することは困難である.本報告では、これらの各パラメータをトレーサー試験結果から同時に評価する際の解の一意性について、一次元の移流・分散およびマトリクス拡散を考慮した支配方程式の理論解を用いて説明するとともに、各パラメータを一意に決定するための新しい試験方法を提案した.

Key Words : tracer test, double porosity media, matrix diffusion, uniqueness of parameter estimation

1. はじめに

高レベル放射性廃棄物地層処分の性能評価においては、 岩盤中の物質移行特性の評価が重要である.一般に、亀 裂の発達した岩盤中の物質移行現象は、亀裂内の移流・ 分散が支配的となるが、亀裂内の流速が遅い場合や、空 隙率の大きい岩盤を対象とした場合は、マトリクス拡散 による遅延効果の影響を受けやすくなる^{1,2}.

亀裂内の移流・分散やマトリクス拡散現象は、それぞ れ亀裂内の実流速や分散係数、マトリクス部の空隙率や 拡散係数などのパラメータによって決定付けられ、これ らは、通常、トレーサー試験によって求められる.しか し、亀裂内の分散とマトリクス拡散は、破過曲線の形状 に対して似通った影響を与えるため、一つの破過曲線か ら各パラメータを一意に決定することは困難である.

最近では、トレーサー試験結果から上記の各パラメー タを同時に、かつ一意に決定する方法として、同一の試 料を対象にトレーサーの注入流量の異なる試験を複数回 実施する方法(Multiple Flow Rate Test,以後、MFTと呼 ぶ)や、分子拡散係数の異なる数種類のトレーサーを同 時に注入する方法(Multiple Tracer Test,以後、MTTと呼 ぶ)などが提案されている^{3,4,5}.しかし、既往の研究 では、これらの方法を適用した場合の解の一意性に関し て理論的な説明がなされておらず、試験の適用範囲や適 切な試験条件の設定方法なども示されていない.

そこで、本報告では、一次元の亀裂内移流分散とマト リクス拡散を考慮した支配方程式の理論解²を用いて、 トレーサー試験結果から移流・分散、マトリクス拡散に 関わる3パラメータを同時に評価する際の解の一意性に ついて理論的な説明を行うとともに、各パラメータを同 時に、かつ一意に決定することが可能な新しい試験条件 の設定方法について提案する.

2. トレーサー試験結果の評価方法

マトリクス拡散を考慮した単一亀裂中の一次元の物質 移行現象は、図-1に示すような概念モデルによって近似 され、以下の支配方程式で表現することができる².

$$\frac{\partial c_f}{\partial t} + v_f \frac{\partial c_f}{\partial x} - D_f \frac{\partial^2 c_f}{\partial x^2} - \frac{n_m D_m}{b} \frac{\partial c_m}{\partial y} \bigg|_{y=b} = 0$$
(1)

$$\frac{\partial c_m}{\partial t} - D_m \frac{\partial^2 c_m}{\partial y^2} = 0$$
⁽²⁾

ここに、x、yは 2 次元座標、 c_f は亀裂内の濃度、 c_m は マトリクス内の濃度、tは時間、 v_f は亀裂内の実流速、 n_m はマトリクス部の空隙率、bは亀裂開口幅の 1/2(2b: 亀 裂開口幅)を示す。 D_f および D_m は、それぞれ亀裂内の 分散係数とマトリクス部の拡散係数であり、 $D_f = \alpha_L v_f$, $D_m = \tau D_d$ で表される. α_L は亀裂内の縦方向分散長、 D_d は溶質の分子拡散係数、 τ はマトリクス部の屈曲度を示 す. Tang 等 ²は、式(1)および(2)について、式(3)に示す理 論解を導出している.

$$\frac{c_f}{c_0} = \frac{1}{\sqrt{\pi}} \exp\left(\frac{P_e}{2}\right) \int_l^\infty \exp\left[-\xi^2 - \frac{P_e^2}{16\xi^2}\right] \cdot 2erfc\left[\frac{Y}{2T}\right] d\xi \quad (3)$$

ここに, coはソース濃度, らは積分変数を示す.また, Y, Tおよびれ,以下の式で表される.

$$Y = \frac{T_0 P_e A}{4\xi^2} \tag{4}$$

$$T = \sqrt{t - \frac{T_0 P_e}{4\xi^2}} \tag{5}$$

$$l = \frac{1}{2}\sqrt{\frac{T_0 P_e}{t}} \tag{6}$$

ここに、 T_0 は平均滞留時間、 P_e はペクレ数、Aはマトリクス拡散による移行パラメータであり、それぞれ以下のように表される.

$$T_0 = \frac{x}{v_f} = \frac{2bWx}{Q_f} \tag{7}$$

$$P_e = \frac{x}{\alpha_L} \tag{8}$$

$$A = \frac{n_m}{b} \sqrt{D_m} \tag{9}$$

ここに、Wは亀裂の幅、Q/は、一定流量条件でトレー サー試験を実施した場合の注入流量を示す(図-2参照). 式(3)~(6)に示すように、単一亀裂内のトレーサー濃 度の変化は、 T_0 , P_e , A の 3 パラメータによって決定付 けられる.トレーサー試験結果の評価では、破過曲線の マッチングにより、まずこれらの 3パラメータが求めら れ、得られた T_0 , P_e , A から、式(7)~(9)の関係により、 2b、 α_L ,および D_m を求める.なお、本報告では、空隙 率 n_m は既知パラメータとして取り扱った.

3. パラメータ評価結果の一意性

トレーサー試験結果から、2b、 *α*_L, *D*_mを同時に評価 する際の解の一意性について検討を行った.検討には、 式(3)の理論解を用い、任意の条件を設定した順解析結 果を仮想的なトレーサー試験結果に見立て、これに対し て逆解析的にパラメータの評価を行った.なお、解析に は、逆解析コードであるiTOUGH2-TRAT[®]を用いた.

トレーサー試験を模擬した順解析のケースと設定パラ メータを表-1,表-2 に示す.本検討では、順解析ケー スとして、注入流量 Q_f の多いケース(casel シリーズ) と、少ないケース(case2 シリーズ)の2種類を設定し

図-1 亀裂内移流・分散およびマトリクス拡散の概念モデル

た. また,各シリーズにおいて,MFTを想定して,さらに Q_f の異なるケースを設定した(case1-2, case2-2).

図-3および図-4に、各ケースの解析結果を示す. 同図 は、実際のトレーサー試験を想定して、式(3)で求めた 濃度データに、±2%の測定誤差を付加したものである. 一意性確認では、複数組の任意のパラメータについて、 式(10)に示す、観測データ(順解析結果)と解析結果と の誤差の二乗平均Sを求めて評価した.

$$S = \sqrt{\frac{1}{N} \sum_{i=0}^{N} \left(C_i^* - C_i\right)^2}$$
(10)

ここに, *C*^{*}iはi番目のマッチングポイントにおける濃度の観測値, *C*iはi番目のマッチングポイントにおける濃度の計算値, *N*itマッチングポイントの総数を示す.

表-3 に、評価ケースを示す.一意性評価は、注入流 量の多いケース(case1)と少ないケース(case2)のそ れぞれについて、一回のトレーサー試験結果からパラメ ータを評価する場合(Single Tracer Test:以後、STTと呼 ぶ)と、MFTを想定した場合について実施した.MFT を想定した場合は、2つの破過曲線を同時にフィット可 能なパラメータの組み合わせを求める.

図-5,図-6に,注入流量の多いケース (STT①, MFT

①)の結果を示す.同図は、2b、 *a*_L, *D*_mの3パラメータ を変化させた際の誤差の二乗平均Sの分布をコンターに したものである.コンターの青系統は、観測値と解析結 果とが良く一致していることを示しており、同コンター において、一点に集中する青系統の明瞭なピークが見ら れれば、逆解析の解はそのピークに収束し、パラメータ が一意に決定できることを示す.図-5より、SST①では、

主っ	一音州 確認 ケーフ
রহ-১	一息性唯能ケース

検討ケース	パラメータ評価に使用するデータセット					
STT(1)	case1-1	Single Tracer Test				
MFT(1)	case1-1, case1-2	Multiple Flow Rate Test				
STT2	case2-1	Single Tracer Test				
MFT2	case2-1, case2-2	Multiple Flow Rate Test				

各コンターにおいて一点に集中する明瞭なピークは見ら れず、3パラメータを一意に決定することができないこ とが分かる.一方、図-6の MFT①では、順解析の設定 パラメータ付近において、Sの分布に明瞭なピークが見 られ、STT①の場合と比べて、パラメータ評価結果の一 意性が向上している.図-7、図-8に、注入流量の少ない ケース (SST②, MFT②)の結果を示す.これより、流 量の少ないケースでは、いずれの場合も、*a*_LやD_mはあ る程度一意に評価できるが、開口幅2bについては、破過 曲線の形状に対する感度が非常に小さく、一意性が低い. 以上より、一次元トレーサー試験結果から、3 パラメ ータを同時に、かつ一意に評価するためには、2b の感 度が十分に確保されるような流量条件において、MFT を実施する必要があると考えられる.

4. 試験条件と開口幅の感度の関係

図-9 および図-10 に、前章の流量の多いケース (case1-1) と少ないケース (case2-1) について、2b を変 化させた場合の破過曲線を示す.これより、case1-1 では、 試験を模擬した順解析のプロットは開口幅の感度が大き い範囲にあるが、低流量条件の case2-1 のプロットは、 開口幅の感度が非常に低い範囲にあることが分かる.た だし、この流量条件と開口幅の感度の関係は、着目する 時間や空間のスケールに依存するため、この関係をより 一般的に表すために理論解の無次元化を行う.

式(3)~式(6)の理論解で,時間 tを T₀で正規化すると, 式(3)中の Y, T, 1を以下のように表すことができる.

$$Y = \frac{P_e \sqrt{T_0 A^2}}{4\xi^2}$$
(11)

$$T = \sqrt{\frac{t}{T_0} - \frac{P_e}{4\xi^2}}$$
(12)

$$l = \frac{1}{2} \left(P_e \frac{1}{t/T_0} \right) \tag{13}$$

式(3)および式(11)~式(13)より,時間 tを T_0 で正規化した場合,破過曲線の形状は, $P_e \ge T_0 A^2 0 2 つの無次元パラメータによって決定付けられることが分かる.$

図-11 に、図-9 と図-10 の破過曲線の時間軸を平均滞 留時間 T_0 で正規化したものを示す.また、表-4 には、 各ケースの無次元パラメータ T_0A^2 を示す.図-11 より、 case1-1、case2-1 とも同様に $P_e=1$ であるため、 T_0A^2 が同じ 値であれば、正規化プロット上において同一の破過曲線 を示す.また、破過曲線の形状(傾き)は、 $T_0A^2=1.6$ を 境に変化しており、 T_0A^2 が 1.6 以下のケースにおいて、 傾きが大きくなる.この $T_0A^2=1.6$ となるケースは、図-9 および図-10 において、2b の変化に対して破過曲線の形 状に変化が見られたケースである.これは、2b の感度

はT_dA²によって決定付けられることを示唆している.

図-12 に、図-11 の各ケースについて、 $P_e=10$ とした場合 ($\alpha_L=0.005$ とした場合)の破過曲線を示す. これより、 $P_e=10$ とした場合、 $P_e=1$ の場合と比べて、全体的に破過曲線の傾きが大きくなるが、曲線の傾きが変化する条件は、 $P_e=1$ の場合と同様に T_0A^2 が 1.6以下となるケースである. すなわち、開口幅の感度は、 P_e の値によらず、 T_0A^2 のみによって決まるものと考えられる.

5. 新しい試験方法の提案

(1) 試験条件の設定方法の提案

上記の知見を踏まえ、一次元トレーサー試験結果から、 3 パラメータを同時に、かつ一意に評価可能な試験条件 の設定方法を提案する.4章より、3 パラメータを一意 に決定するためには、①着目する時間スケール、②開口 幅の感度を有する流量条件、の2つの条件を決定する必 要がある.①の時間スケールは、試験の実施期間であり、 試験計画において決定すべき項目である.また、②の開 口幅の感度を有する流量条件は、前述の無次元パラメー タ (T_0A^2) によって決定できる.以下に、具体的な試験 条件の設定方法について理論解を用いて説明する.

4章より、2bの感度は P_e の値によらず、 T_cA^2 のみによって決定付けられることが分かった。そこで、ここでは 亀裂内の分散を無視した場合($D_{j=0}$ の場合)の理論解 を用いて検討を行う。式(1)の支配方程式において、 $D_{j=0}$ とした場合の理論解は、Tang 等²によって以下のように示されている。

$$\frac{c_f}{c_0} = erfc \left(\frac{T_0 A}{2\sqrt{t - T_0}} \right)$$
(14)

ここで、式(14)において、ある任意の開口幅2 $b=2b^*$ を 与えた場合の破過曲線(BTC1)と、BTC1の開口幅を γ 倍した場合($2b=2b^* \times \gamma, \gamma>1$)の破過曲線(BTC2)を 考える(図-13).また、BTC1とBTC2のそれぞれにつ いて、時間 $t=t^*$ における亀裂内の濃度 c_0 を以下の式(15)、 式(16)で表した場合、式(17)と式(18)の関係式が成り立つ.

$$\frac{c_f}{c_0} = erfc(\alpha) \tag{15}$$

$$\frac{c_f}{c_0} = erfc(\beta) \tag{16}$$

$$\frac{T_0 A}{2\sqrt{t^* - T_0}} = \alpha \tag{17}$$

$$\frac{T_0 A}{2\sqrt{t^* - \gamma T_0}} > \beta \tag{18}$$

ここに、 α 、 β はそれぞれ BTC1 および BTC2 におけ る、式(14)の相補誤差関数の変数を示しており、 $\alpha < 1$ 、 $\beta > \alpha$ の関係にある.式(17)と式(18)の連立不等式を解く と以下の式を得る.

$$t^* = \frac{T_0^2 A^2}{4\alpha^2} + T_0 \tag{19}$$

$$T_0 A^2 < \frac{4\alpha^2 \beta^2 (1-\gamma)}{\left(\alpha^2 - \beta^2\right)}$$
(20)

式(19)は, BTC1 の c_{c_0} が $erfc(\alpha)$ となる時間 t^* を示しており,これにより,破過曲線がある濃度に達するまでの時間を求めることができる.式(20)は,開口幅の γ 倍の変化に対して,時間 t^* における濃度 c_{c_0} が $erfc(\alpha)$ から

erfc(β)以下に変化するような T_0A^2 の条件を示している. すなわち,式(20)と式(21)によって,着目する時間スケー ルにおいて必要な開口幅の感度を有する試験条件を決定 することが可能となる.実用的な例として,開口幅の 2 倍の変化に対して,亀裂内の濃度 c/c_0 が約 0.5 となる時 間 t^* において,濃度 c/c_0 が 5%程度以上変化するような 条件を設定する場合,a=0.5, $\beta=0.55$, $\gamma=2.0$ となり, 式(20)は $T_0A^2 < 5.76 (= 6)$ となる.3章で 3パラメータを一 意に決定することができた MFT①は,いずれもこの条 件を満たした試験条件が設定されている.

本来, T_0 やAは未知パラメータであるが,通常,これ らのパラメータは別途実施される透水試験や拡散試験, 基本物性試験結果などによって,ある程度の範囲で想定 することができる.また,試験時間や注入流量などの条 件は,注入ポンプの種類や濃度の測定方法などの条件に よっても制約される.したがって,試験条件の設定は, これらのパラメータの想定範囲や制約条件を踏まえ,上 述の式(19)および式(20)によって決定する必要がある.

(2) 新しい試験方法の提案

前節では、試験時間と流量をtと $T_0A^2 < 6$ に基づいて決 定すれば、3 パラメータを一意に決定できることを示し た. ただし,3章で実施した MFT① (図-6) は,流量の 異なる 2 回のトレーサー試験が、いずれも T₀A²<6 の条 件を満たしているが、誤差の二乗平均Sのピークは1オ ーダー程度の範囲に分布しており不確実性が大きい. 一 方, T₆A²>6 となる MFT②の結果 (図-8) を見ると, 2b を一意に決定できない代わりに *a*_Lや *D*_mの一意性が高い. そこで、本報告では、新たな方法として、T₀A²<6となる 流量の多いケースと、T_AA²<6とならない流量の少ないケ ースとを組み合わせた MFT を提案する. この方法につ いて、3章と同様の一意性確認を行った.表-5に順解析 の条件を示す. MFT を想定した 2 ケースの流量は、そ れぞれ $T_{c}A^{2} < 6 \ge T_{c}A^{2} > 6$ を満たす条件となっている.ま た, 2 ケースの流量比は 3 章の case2-1, case2-2 と同様に 5 倍とした. 図-14 に誤差の二乗平均 S のコンターを示 す. これより, 図-6 と比べて, Sのピークが鋭敏になり, より不確実性が低減されたことが分かる.特に、不確実

図-14 設定の二米十均 S のコンター(利にに捉采した Mir	圛-14	誤差の二乗平均Sのコンター	(新たに提案した MFI
---	------	---------------	--------------

衣 -5 促杀力法(U)試験采件					
解析ケース	$Q_{\rm f}({\rm cc}/{\rm min})$	t [*] (s)	T_0A^2 (-)		
case3-1	0.01	25800	16.2		
case3-2	0.05	1272	3.24		

性の低減は α_L の評価で大きく、これは、 $T_0A^2>6$ となる 低流量のケースを加えたことの効果であると考えられる.

6. まとめ

本報告では、一次元の室内トレーサー試験を想定し、 試験結果から亀裂内の移流・分散、およびマトリクス拡 散に関わる3パラメータを同時に、かつ一意に評価した 場合の解の一意性について理論的な説明を行った. その 結果、試験条件によっては従来から提案されているMFT を適用してもパラメータを一意に決定できないことが明 らかとなった.また、3パラメータを一意に評価可能な 試験条件を無次元パラメータに基づいて設定できること を示した. 今後は、複数の亀裂を対象とした場合や、異 なる次元や境界条件を想定した場合など、より複雑な条 件において同様の検討を行う予定である.

謝辞:本研究を進めるにあたり、米国ローレンスバーク レー国立研究所開発のiTOUGH2-TRATを使用させて頂い た. ここに謝意を表す.

参考文献

- 1) Neretnieks, I. : Diffusion in the rock Matrix : An important factor in radionuclide retardation?, Journal of Geophysical Research, Vol. 85, No. B8, pp.4379-4397, 1980.
- 2) Tang, D. H., Frind, E. O., Sudicky, E. A. : Contaminant transport in fractured media : Analytical solution for a single fracture : Water Resources Research, Vol. 17, No. 3, pp. 555-564, 1981.
- 3) Callahan, T. J., Reimus, P. W., Bouman, R. S., Haga, M. J. : Using multiple experimental methods to determine fracture/matrix interactions and dispersion of nonreactive solutes in saturated volcanic tuff, Water Resources Research, Vol. 36, No.12, pp.3547-3558, 2000.
- 4) Reimus, P. W., Haga, M. J., Adams, A. I., Callahan, T. J., Turin, H. J., Counce, D. A.: Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests : Journal of Contaminant Hydrology, 62-63, pp. 613-636,2003.
- 5) 熊本創, 下茂道人, 山本肇, 澤田淳: トレーサー試験 による亀裂内移流・分散とマトリクス拡散の評価手 法に関する数値解析的検討,土木学会第64回年次学 術講演会講演論文集, 2009.
- 6) Zhou, Q.: Software management report for iTOUGH2-TRAT, Version 1.0, 1001-SMR-1.0-00. Lawrence Berkeley National Laboratory, Berkeley, CA., 2005.

AN EVALUATION METHOD ON ADVECTION-DISPERSION AND MATRIX DIFFUSION PARAMETRS WITH TRACER TEST IN SINGLE FRACTURE

Sou KUMAMOTO, Michito SHIMO

The evaluation of the advection-dispersion in the fracture and diffusion into the matrix from fracture is very important to describe the mass transport processes in fractured porous media such as a sedimentary rock. However, it is often difficult to uniquely determine a number of parameters relevant to these phenomena, such as the fracture aperture, dispersivity coefficient, and matrix diffusion coefficient, from a data set of single tracer test. In this report, the uniqueness of the parameter estimations from onedimensional tracer test was studied using an analytical solution for single fracture model. And the new method of tracer test conditioning to uniquely estimate these three parameters was suggested.