堆積岩による排水三軸せん断-保持-せん断試験

岸田 潔^{1*}・Derek Elsworth²・矢野 隆夫¹・安原 英明³・中島 伸一郎⁴

¹京都大学 工学研究科都市社会工学専攻(〒615-8540京都市西京区京都大学桂C1)
²Pennsylvania State University (University Park, PA 16802, USA)
³愛媛大学 理工学研究科生産環境工学専攻(〒790-8540愛媛県松山市文京町3番)
⁴山口大学 工学部社会建設工学科(〒755-8611宇部市常盤台2-16-1)
*E-mail: kishida.kiyoshi.3r@ kyoto-u.ac.jp

岩盤の力学および水理学的特性を長期的な視点で論じる場合,熱や化学変化にともなう構造の変化,不 連続面の変化を議論する必要がある.本研究では,比較的軟らかい堆積岩を用いて排水三軸せん断試験を 行い,残留状態においてせん断-保持-せん断のプロセスを適用した.実験は,拘束圧および温度条件を変 化させ,せん断過程で発生したせん断帯におけるヒーリング現象の有無を確認するものである.結果とし て,ヒーリング現象を確認することができ,保持時間に比例して強度回復が表れることを確認した.

Key Words : triaxial experiment, sedimentary rock, slide-hold-slide process, healing

1. はじめに

放射性廃棄物やCO2等エネルギー生成後の副産物を岩 盤内に固定し,長期に渡り隔離性能を保証するためには, 天然バリアとなる岩盤の力学・水理学特性の変化を予測 評価することは必要不可欠である.一定の温度-応力条 件で長期間保持すると,岩盤不連続面の接触部で圧力融 解反応が発生し,不連続面の開口幅が変化し,さらに透 水性が変化するという研究が行われている^{1)~5}.不連続 性岩盤の力学・水理学的特性は,不連続面に支配される という観点から,不連続面に着目したものである.一方, 堆積岩は,CO2隔離固定の際のキャップロックとして, また,低レベル放射性廃棄物の余裕深度処分では,処分 空洞対象地点を構成する岩盤として検討がなされており, 熱・水・応力・化学連成を考慮した長期岩盤の力学的・ 水理学的挙動の解明が必要不可欠である.

本研究では、亀裂を含まない堆積岩を対象として、せん断過程において所定の応力-温度状態で一定期間保持し、その後の再せん断を実施する. 亀裂を含まない堆積岩をせん断することで、せん断帯が生成される. 残留状態において保持することで、そのせん断帯の力学的性状が、保持時間、応力、温度条件でどのように変化するのかを解明するのが目的である. この検討は、上記に示すプロジェクトの空洞周りの長期安定問題だけでなく、断層破砕帯の再活動(再せん断)の規模の予測に寄与するものと考える.

2. 供試体

(1) 岩質

本研究で用いた岩石試料は,軽石火山礫凝灰岩(流紋 岩質軽石火山礫凝灰岩)である.緑灰色で多孔質の vesicular軟質火砕岩であり,主に径5 mm以下の軽石 pumice片などの火山砕屑物から構成される.軽石片は, 変質して緑〜白色を呈し扁平なものが多く存在する.

(2) モード組成測定

直径50 mmの岩石コアから岩石薄片(35 mm×2 mm)を2 枚作成し、モード組成測定用試料とした.顕微鏡写真の 一例をPhoto 1に示す.モード組成測定法は、ポイントカ ウンターにより2 mm方眼単位で200×2点移動測定し、 各鉱物の数量比を百分率で表し測定値とした.分析結果 をTable 1に示す.粘土鉱物や沸石は、軽石~ガラス基質 微粒子のガラス物質(気孔も含めて)起源のため、ガラ ス物質組織の総量に含まれる.ガラス物質組織は約85% で、結晶片・岩片は約15%である.結晶片は、石英と斜 長石がほとんどで、軽石片中の斑晶はごくまれである. 空隙は、ガラス物質組織起源のものであり、自生鉱物に 囲まれたものである.

(3) 軽石の岩質と変質

一般に,流紋岩(~安山岩)質マグマが火山ガスあるい は外水を多量に取り込んだ状態で爆発的に放出され急冷

Photo 1 Photomicrograph of purnice lapilli tuff. Photo shows the bedding of flatty purnice. (Magnification: ×60, qz: quartz, pl: plagioclase, bi: biotite, pm: purnice)

Sample No.		1-1 [%]	1-2[%]	Average [%]
Natural mineral generated by glassy	Celadoite	38.0	40.0	39.0
	Montmorillonite	12.0	13.5	12.75
	Zeolite	34.0	31.5	32.75
	(Clinoptilolite)	(33.5)	(30.5)	(32.0)
Crystal and lithic	Quartz	4.0	7.5	5.75
	Plagioclase	8.0	6.0	7.0
	Lithic	3.0	1.5	2.25
Void		1.0	-	0.5

Table 1 Mode composition of pumice lapilli tuff

固化すると,無数の気孔と火山ガラスの気孔壁からなる 軽石が生じる.本研究で用いる供試体に含まれる軽石の うち,気孔組織が層に平行したものは上下方向が圧密さ れた結果,やや扁平な形をなして並列し層理を形成して いる(Photo 1).

濃緑色の軽石や岩片は、やがて褐色化することから 「ミソ」と呼ばれている.主に鉄分に富むモンモリロナイ トからなり(Photo 2)、乾燥すると亀裂をともなって強 く収縮するため、大きなものは離脱しやすい.褐色化は、 酸化鉄の含水・水酸化(褐鉄鉱化)によるものと考えられ る.本研究で用いる岩では、径120×100 mmの濃緑色の 塊状軽石がその典型である.

軽石や火山ガラスは, 全組織が沸石・粘土鉱物に変質

1.0 mm

Photo 2 Photomicrograph of purnice lapilli tuff. Photo focus on the Fe montmorillonite.(Magnification: × 15, qz: quartz, pl: plagioclase, pm: purnice, mo: Montmorillonite with Fe)

している.これは続成作用によるもので,これら変質鉱物は自生鉱物ともいう.沸石は、斜プチロル沸石で径0.1 mm以下の板状結晶をなし、肉眼、鏡下で白〜白灰色を呈する.一方、粘土鉱物はセラドナイト(雲母粘土鉱物の一種),鉄分に富むモンモリロナイト(スメクタイトの一種)の2種があり、前者は肉眼、鏡下で淡緑色、後者は濃緑〜褐色を呈する.軽石の気孔壁や火山ガラス片では、斜プチロル沸石の板状結晶が外縁両側から櫛状に配列していることが確認できる.

軽石の気孔(空隙)組織および火山ガラス微粒子の多く が粘土鉱物のセラドナイトに変化している.一方,濃緑 色の「ミソ」では、気孔・気孔壁の全組織または気孔に限 りモンモリロナイト化している.一部の気孔には、低温 熱水に溶解したガラス成分の結晶化により粘土鉱物と共 生して斜プチロル沸石の晶出も認められる.

これらの観察結果より、本研究で用いる岩石は、熱に よる変質が想定されるものであると考えられる.

3. 三軸せん断-保持-せん断試験

(1) 実験方法

2章で説明した岩石試料を用いて4つの円柱供試体を作 製し、実験を行った.実験は、圧密排水状態で行い、軸 ひずみ速度を0.01 %/minとして三軸せん断を行った.保 持は、ピーク後残留状態で行い、保持時間は、60,180, 300,600,900,1800 秒を基本とし、長期保持としては、約 14時間の保持を行った.有効拘束圧は、0.3,0.5,0.7 MPa とし、0.7 MPaでは、63℃に加温して実験を行った. Table 2に供試体と実験条件を示す.

(2) 実験結果

有効拘束E0.3 MPa, 温度条件20℃で実施した実験の 軸差応力-軸ひずみおよび体積ひずみ-軸ひずみ関係を Fig.1に示す. 軸差応力-軸ひずみ関係では, せん断に伴 いひずみは硬化し, ピークを迎えその後軟化し, 残留状 態に至る挙動を示している. 一方, 体積ひずみ-軸ひず み関係は, ピーク応力に達するまでは, 体積が圧縮する 挙動を示し, その後膨張する挙動を示している. これら は, 一般的な堆積岩の低拘束圧下での挙動である.

せん断-保持-せん断過程での軸差応力-軸ひずみおよび 体積ひずみ-軸ひずみ関係を拡大したものをFig2に示す. Fig2(a)は、Fig1に示す供試体K2010_01の結果である.保 持することに伴い応力緩和が発生し、再せん断にともに 強度が増加し、ピークを迎えて残留状態に至ることが確 認できる.ピーク強さは、保持前の軸差応力よりの大き くなり、明瞭な強度回復現象が確認できる.体積ひずみ は、軸ひずみの増加に併せて緩やかにダイレイションし ており、保持-再せん断の明瞭な影響は確認できない.

有劾拘束圧0.5 MPa, 温度条件20℃(K2010 02), 有効拘 束圧0.7, 温度条件20℃(K2010 04), 有効拘束圧0.7, 温度 条件63℃(K2010 05)でのせん断-保持-せん断過程での軸差 応力-軸ひずみおよび体積ひずみ-軸ひずみ関係をFig,2(b), (c), (d)に示す. Fig.2(b)より, せん断保持時の応力緩和は 確認できるが、再せん断に伴う軸差応力は、せん断前と 同レベルであり、強度増加は確認できない. 長期間保持 することにより、体積ひずみが増加し、応力レベルは保 持開始時に戻らないことが確認できる. Fig.2(c)では、強 度の回復現象は、Fig.2(a)と同じような傾向で確認される. 一方,長期間の保持では,Fig.2(b)と同様体積ひずみ増加 が確認できる. Fig.2(d)は, Fig.2(c)と同じ拘束圧で加温を 行い実験した結果である.再せん断後の軸差応力は、保 持時点と同じレベルに戻るが, 強度増加は確認できない. 一方、体積ひずみは、長期保持することにより減少する ことが確認される.これは、他のケースと異なる傾向で ある.

Table 2 Specimens and experimental conditions

Specimen	Effective confining stress [MPa]	Thermal condition [$^{\circ}$ C]	
K2010_01	0.3		
K2010_02	0.5	20 (Room temperature)	
K2010_04	. -		
K2010_05	0.7	63	

Fig. 1 The deviator stress – axial strain and the volumetric strain – axial strain relations under 0.3 MPa effective stress condition and room temperature (Specimen No. K2010 01)

4. 考察

(1) 再せん断過程での強度増加

保持後の再せん断過程でみられる強度増加は、Fig.3に 示すように、再せん断後のピーク軸差応力と残留状態 での軸差応力の差分(*Aq*)で定義する.Fig.4に*Aq*と保持時 間関係を示す. いずれのケースでも保持時間に比例し て*Aq*が増加することが確認できる.これらの関係は、 Dieterichが示す対数線形^{6, n}で表現することが可能である. 限られた実験結果ではあるが、拘束圧が大きい方が*Aq* が大きくなり、加温することで*Aq*は減少する傾向にあ る.先にも述べたが、本供試体は、一部の気孔には、 低温熱水に溶解したガラス成分の結晶化により粘土鉱 物と共生して斜プチロル沸石の晶出も認められる.す なわち、温度を作用させることで、粘土鉱物の晶出を 促し、強度増加が顕著に表れなかったことが考えられ る.

(2) 保持による応力緩和

応力緩和(Δq_c)と保持時間の関係を**Fig.5**に示す. Δq_c は, **Fig.3**に示すように保持期間の軸差応力の減少量とする. **Fig.5**より,時間に比例して Δq_c が増加することが確認で きる.拘束圧が0.3 MPaと0.5 MPaでは、 Δq_c に差異は見ら れない. 短い保持時間の間では、0.7 MPaは他のケース 比べて Δq_c が大きいが、温度による差異は見られない.

Fig.3 The concept of stress reduction and stress recovery at slide-hold-slide process

拘束圧0.7 MPa, 温度条件20℃(K2010_04)での実験にお ける保持時間(3600 sec, 7200 sec)と平均主応力の関係を Fig.6に示す.平均主応力は,保持期間の初期で急激減少 し,その後減少率は低下する.4000 sec以上では,平均

Fig.4 Shear strength recovery are plotted versus holding time

主応力はほぼ一定である. Fig.7には、軸差応力と平均主 応力の関係を示す.保持時間がいずれのケースでの初期 からピークに至るまでの応力経路に沿って応力が変化す ることが確認できる.

Fig.5 Shear strength reduction are plotted versus holding time

Fig.6 Mean principle stress are plotted versus holding time under 0.7 confining stress condition and $20\,^\circ\mathrm{C}$ thermal condition.

Fig.7 The deviator stress and mean principle stress history under 0.7 confining stress condition and 20 °C thermal condition.

一方、同様の拘束条件で加温した結果では、体積ひず

みが減少した.今回の実験は、間隙水圧を計測していな かったが、保持期間での間隙水圧の挙動を把握し、有効 応力での応力履歴により検証を行う必要がある.

5. まとめ

堆積岩を用いた圧密排水条件での三軸せん断-保持-せ ん断試験を行った.残留状態で保持することで,保持時 間に比例して再せん断後の強度増加現象が確認できた. 一部ではあるが,強度増加は拘束圧に比例することが確 認された.せん断過程で生成されたせん断面において, 拘束に伴い圧力融解現象が作用し,強度が回復したもの と考えられる.

一方,加温したケースでは、明瞭な強度増加が確認で きなかった.これらは、本研究で用いた供試体の温度に よる鉱物的な化学変化に起因する可能性が考えられる. また、保持状態において平均主応力が減少しているにも 関わらず、体積ひずみが減少することが計測されている. 明確な原因は不明であり、このケースだけの特殊な結果 である可能性がある.

参考文献

- Weyl, P. W.: Pressure solution and the force of crystallization-A phenomenological theory, *Journal of Geophysical Research*, Vol. 64, No. 11, pp. 2001-2025, 1959.
- Revil, A.: Pervasive pressure-solution transfer: a poro-visco-plastic model, *Geophysical Research Letters*, Vol. 26, No. 2, pp. 255-258, 1999.
- Yasuhara, H., Elsworth, D. and Polak, A.: Evolution of permeability in a natural fracture: Significant role of pressure solution, *Journal of Geophysical Research*, Vol. 109, No. B3, B03204, doi: 10.1029/2003JB002663, 2004.
- Yasuhara, H., Marone, C. and Elsworth, D.: Fault zone restrengthening and frictional healing: The role of pressure solution, *Journal of Geophysical Research*, Vol. 110, No. B06, B06310, doi: 10.1029/2004JB003327, 2005.
- 5) 中島伸一郎,川口雄大,岸田潔,安原英明,矢野隆夫, 細田尚:負荷状態保持による岩石亀裂のせん断強度お よび透水性の変化,材料,59(3),日本材料学会,pp. 211-218,2010.
- 6) Dieterich, J. H.: Time-dependent friction in rocks, *Journal* of *Geophysical Research*, Vol. 77, pp. 3690-3697, 1972.
- Dieterich, J. H.: Modeling of rock friction: 1. Experimental results and constitutive equations, Journal of Geophysical Research, 84, 2161-2168, 1974.

TRIAXIAL SLIDE-HOLD-SLIDE SHEAR EXOERIMENT OF SEDIMENTARY ROCK UNDER DRAIN CONDITION

Kiyoshi KISHIDA, Derek ElSWORTH, Takao YANO, Hideaki YASUHARA, and Shinichiro NAKASHIMA

When discussing the mechanical and hydro-mechanical properties of rock masses under the long-term holding, the variation of rock structure and the change of shear band condition should be discussed in considering the effect of thermal and chemical influences. In this research, the triaxial shear experiment under drain condition was conducted through sedimentary rock, and in the residual stress state, the slide-hold-slide processes were applied to this triaxial experiments. The experiments were carried out in 3 kinds of confining conditions and 2 kinds of thermal conditions. Consequently, the healing phenomena can be observed and the shear strength recovery is also confirmed in process of the holding time.