# 埋設型センサーで計測されるひずみの補正 に関する室内要素試験

谷和夫<sup>1</sup>·田中悠一<sup>2\*</sup>·岡田哲実<sup>3</sup>·平野公平<sup>4</sup>·高倉望<sup>2</sup>·池野谷尚史<sup>2</sup>

<sup>1</sup>横浜国立大学大学院(〒240-8501 神奈川県横浜市保土ヶ谷区常盤台79-5)
 <sup>2</sup>東急建設㈱土木総本部土木技術部(〒150-8340 東京都渋谷区渋谷1-16-14 渋谷地下鉄ビル)
 <sup>3</sup>側電力中央研究所地球工学研究所(〒270-1194 千葉県我孫子市我孫子1646)
 <sup>4</sup>㈱セレス(〒270-1194 千葉県我孫子市我孫子1646(財)電力中央研究所内)
 \*E-mail: tanaka.yuuichi@ tokyu-cnst.co.jp

岩盤から採取したボーリングコアにひずみゲージや熱電対等のセンサーを取り付けて埋め戻すという新 しい原位置地盤のモニタリングに用いる計測システム,通称「コアセンサー」が提案された.しかし、こ の手法によるひずみの計測結果には岩盤の変形以外の要因によるひずみ変動が含まれており、データの補 正方法の開発が課題となっていた.そこで、コアセンサーにより得られた計測データの補正方法の開発を 目的とし、岩盤を模擬した人工軟岩を用いて、ひずみと温度の長期計測試験を行った.その結果、影響要 因ごとにひずみ変動の収束値のばらつきや収束に要する日数に関する知見が得られた.

Key Words : strain, softrock, measurement, mudstone

# 1. はじめに

堆積軟岩は熱や水等の外部環境の変化に影響を受けや すく長期の変形特性が顕著であるため、安全な地下利用 を実現するためには、変形挙動の長期計測が重要である。 そこで著者らは、岩盤の変形挙動を長期間かつ高精度に 計測することを目的とし、岩盤から採取したボーリング コアにひずみゲージ等の計測センサーを取り付けてグラ ウトで埋め戻す「原位置地盤のモニタリング方法(特願 2007-207897)」を考案した。

現在までにこの計測システム,通称「コアセンサー」 を用いた原位置加熱実験により,高レベル放射性廃棄物 の地層処分施設に対する適用性を検証してきた<sup>10</sup>.しか し,計測値には,岩盤の変形挙動以外に温度変化やグラ ウトの硬化,コアセンサーの吸水膨張等を要因とする見 掛けのひずみ(以下「ひずみ変動」と総称する)が含ま れており,その補正方法の検討が求められている.

そこで、ひずみ変動に関する知見の獲得とコアセンサ ーの計測値の補正方法の確立を目的として、コアセンサ ーを用いた室内要素試験を実施した.

# 2. 試験内容

# (1) 対象としたひずみ変動項目

既往の実験結果等<sup>3</sup>から推測される主なひずみ変動は 以下の4種類である。

# a) 温度変化によるひずみ変動: △ε<sub>1</sub>

温度変化時に即時的に計測されるひずみとしては、被 測定体の熱膨張・熱収縮ひずみと補正すべき計測誤差が 挙げられる.計測誤差は、ゲージ率の変化による誤差と、 被測定体とひずみゲージの線膨張係数の違いによる誤差 の2種類に分けられる.

# b) 接着剤によるひずみ変動 : Δε<sub>ad</sub>

コアセンサーの作製時にひずみゲージをコアに接着する.この際に使用するゲージ接着剤の硬化に追従してひずみゲージが変形し,ひずみ変動が生じる.

#### c) グラウトによるひずみ変動: $\Delta \varepsilon_{g}$

コアセンサーの作製時におけるコアの連結,およびコ アセンサーの岩盤への埋設に使用するグラウトがコアセ ンサーに影響を及ぼし,ひずみ変動が生じる.

# d) 水浸によるひずみ変動: ∠ε<sub>w</sub>

原位置でのコアセンサー計測では、コアセンサーが岩 盤内の地下水に浸潤される場合がある.この時、コアが 吸水膨張し、ひずみ変動が生じる.

#### (2) 試験ケース

試験ケースを表-1 に,各種グラウトと人工軟岩の質 量配合比を表-2 に示す.また,各試験体への計測機器 の取付位置を図-1 に示す.

# a)試験分類A

人工軟岩製のコアセンサー(試験体 Ac)を作製し, 模擬地盤(試験体 Ab)に埋設し,温度変化,使用材料 の違い(ひずみゲージ,接着剤,グラウト),水浸の 有無によるひずみ変動の差異を評価する.

- 人工軟岩製の一辺200mmの立方体ブロック(作製から 3年以上経過しており、強度発現は概ね収束している) の中央から直径50mm×高さ200mmのコアを採取し、50 /100/50nmに分割する.
- ② 2種類のひずみゲージ(㈱東京測器研究所/WFLM-30-11-3LT・WFLA-6-11-3LT,以下「BMゲージ」・ 「BHゲージ」)と熱電対(㈱東京測器研究所/T-6F-0.65)を取り付け、グラウトで連結する(試験体Ac, 直径62mm×高さ200mm).BMゲージはポリエステル 系2液型接着剤(㈱東京測器研究所/PS,以下「P接 着剤」),BHゲージはシアノアクリレート系瞬間接 着剤(㈱東京測器研究所/CN-E,以下「C接着剤」) を使用して接着した.なお、図中の「V」は鉛直方 向,「H」および「H'」は互いに直交する水平方向 を表す.
- ③ 試験体Acはコア抜きしたブロック(試験体Ab)の直 径75mm×高さ200mmのボーリング孔に戻し,間隙をグ ラウト(連結時と同様のもの)で充填して埋設する.
- ④ 鋼製の載荷板と底板(いずれも縦200mm×横200mm×
   厚さ10mm)を試験体上下面に石膏で接着する.

b)試験体B

縦 100 mm×横 50 mm×厚さ 5 mm,線膨張係数 $\beta_{f}$ =0.5  $\mu$ /C の石英ガラスの裏表に BM ゲージと BH ゲージを一枚ず つ接着し,温度変化によるひずみ変動 $\Delta_{f}$ を評価する.

#### (3) 計測環境

図-2 に示す試験フローに従い,気中と水中の2種類の環境下で計測を行った.

# a) 気中計測

各試験体にひずみゲージを接着した時点から、気温 の変化や空調の影響下にある室内で気中計測(温度  $T = 10 \sim 23^{\circ}$ )を開始した. 試験体 Ac の連結および試験体 Ab への埋設は気中で行った.

#### b)水中計測

地盤中の飽和環境を模擬して水中計測を行った.室 温がほぼ一定の地下ピット内で,水槽(容量 551)内に 試験体 A・Bを静置して水道水中で 3ヶ月間養生した. 約 1 週間室温(T=11~13℃)の下で計測を行った後に,

表-1 試験ケース

| 試験<br>分類 | Case       | 温度<br>制御 | 使用<br>グラ外 | 試験体<br>材料 | 試験体寸法<br>(単位:mm)         |  |  |
|----------|------------|----------|-----------|-----------|--------------------------|--|--|
| ^        | 1-a<br>1-b | 1        | a<br>b    | 人工        | Ac : 直径 62<br>高さ 200     |  |  |
| A        | 2<br>3     | 23       | a         | 軟岩        | Ab:一辺 200 立方体<br>中央孔径…75 |  |  |
| В        | 1 2        | 1 2      |           | 石英        | 縦100×横50×厚さ5             |  |  |
|          | 3          | 3        |           | ~ / / /   |                          |  |  |

#### 表-2 グラウトおよび人工軟岩材料の質量配合比

| グ ラウト a  |     | グ ラウト b  |     | グラウトc    |     | 人工軟岩     |     |
|----------|-----|----------|-----|----------|-----|----------|-----|
| 早強ポ 小    | 25  | 早離。小     | 10  | 早強。小     | 25  | 普通常外     | 11  |
| ラント・セメント | 2.3 | ラント セメント | 1.0 | ラント・セメント | 2.3 | ラント・セメント | 1.1 |
| 木節粘土     | 1.0 | 泥岩粉末     | 1.0 | 加リン      | 1.0 | カオリン     | 1.0 |
| 無収縮材     | 0.2 | 水        | 1.0 | 無収縮材     | 02  | 川砂       | 5.5 |
| 7        | 30  | AF減水剤    | 001 | 7k       | 30  | 7k       | 15  |



図-1 計測機器の取付位置





図-3 の 3 種類の温度制御パターンに従ってヒーター (アズワン㈱製/TM-2) による加熱を行った.パター ン3は原位置加熱実験の加熱サイクルに準拠する<sup>3</sup>.

# 3. 試験結果と考察

- a) 既往の補正方法

既往の文献<sup>30</sup>では、以下の①~③の手順でAgを除去す る方法が示されている.

① データロガーのゲージ率補正+リード線の感度補正

ここで, ε<sub>0</sub>:補正値① (μ) , ε: 実測値 (μ) K<sub>0</sub>:補正ゲージ率①, K:表示ゲージ率 R: ひずみゲージの抵抗値 (Ω) r: リード線1m当りの往復抵抗値 (Ω/m) L: リード線の長さ (m)

② 温度変化によるゲージ率補正

$$\varepsilon_{\rm i} = \frac{K_0}{K_{\rm T}} \cdot \varepsilon_0, \quad K_{\rm T} = K_0 (1 + C_{\rm k} \cdot \Delta T_{\rm ck} / 1000) \qquad \text{ \ensuremath{\vec{\Xi}}} (2)$$

ここで, *ϵ*:補正値② (μ) , *K*<sub>T</sub>:補正ゲージ率② *C*<sub>k</sub>:ゲージ率の温度係数 (%/10℃)

*∆T<sub>d</sub>*: 20℃を基準とした温度増分 (℃) ③ 熱出力補正

ここで, &: 補正値③(µ)

β<sub>s400</sub>: SS400の線膨張係数(=11.8μ<sup>°</sup>C) ε<sub>qp</sub>: SS400接着時の熱出力(μ, 図-4参照) ΔT:計測開始点からの温度増分(℃)

③で得られる には、理論上、被測定体の熱膨張によ るひずみ、被測定体の熱膨張が拘束される場合の見掛け のひずみ(以下、熱応力ひずみ)および温度変化以外の 要因によるひずみが含まれる.もし被測定体が温度変化 以外の要因によるひずみが生じない環境下に置かれてい るのであれば、 には A Gi が完全に除外された、被測定体本 来のひずみである.

# b) 補正方法の検証

 $\Delta \epsilon_{\rm f}$ の影響のみを受ける環境下にてひずみを計測した 試験分類Bでは、試験体は無拘束状態であるため自由に 熱膨張できる.よって、試験体Bの計測値にa)の補正方 法を適用して得られる $\epsilon_{\rm c}$ には、石英ガラスの熱膨張ひず み(= $\beta_{\rm f}\Delta T$ ,  $\beta_{\rm f}$ :石英ガラスの線膨張係数=0.5  $\mu$ /C)の みが含まれていることになり、 $\epsilon_{\rm t}$ から $\beta_{\rm f}\Delta T$ を差し引いた 値は零になるはずである.



図-6 補正値と温度の関係(試験体D)

そこで、試験体Bの計測値に対してa)を適用して得ら れた補正値 $\epsilon_{c}$ と、 $\epsilon_{c}$ - $\beta_{c}\Delta T$ で算出される $\epsilon_{a}$ (以下、零補正 値)の経時変化および温度との関係を示す図-5、図-6に おいて、補正の効果を検証する.なお、図では圧縮ひず みを正とし、比較に使うデータは水中計測時における加 熱開始前~2回目の昇温終了時点とする.

図−5を見ると、山型の温度変化に追従して<sub>€1</sub>も山型に 変化している.また、図−6の<sub>€1</sub>の曲線に対し線形回帰を 行って得られる直線の傾きは-1.40µ/℃であり、予測値

(=0µ℃) と一致しなかった.

よって、コアセンサーの計測値に対しa)を適用して得た補正値には、温度変化の影響が含まれる可能性がある.

原因としては、今回未検討のゲージ接着剤の熱変形の 影響が考えられるが、以降のひずみ変動の検討では、 この影響は微量で無視できると考え、温度変化の影響 が完全に補正されたデータとして&を用いる.

# (2) ゲージ接着剤によるひずみ変動 <br /> 么て、<br /> の検討

図-7に、横軸をゲージ接着直後からの経過時間 $t_{ad}$ とし、 試験体Acの鉛直・水平ひずみ $\epsilon_i \cdot \epsilon_h$ の経時変化を示す. また、図-7の各データに対し、式(4)の指数関数でフィ ッティングを行い得られた近似式のパラメータ $p_1$ 、 $q_1$ の 平均値と標準偏差を表-3に示す.なお、図-7には、式 (4)の $p_1$ 、 $q_1$ に、表-3の平均値を代入して得られる曲線 (太線)と、平均値±標準偏差を代入して得られる曲 線(破線)を示した.さらに、式(4)を $t_{ad}$ で微分し、 $p_1$ 、 $q_1$ の平均値を代入して得られた1日当りのひずみ変動量  $d\Delta \epsilon_{ad}/dt_{ad}$ の経時変化を図-8に示す.

 $\Delta \varepsilon_{ad} = p_1 \{1 - \exp(-t_{ad}/q_1)\}$ 式(4) ここに、 $t_{ad}$ :ゲージ接着直後からの経過時間(day)  $p_1 : \Delta \varepsilon_{ad}$ の収束値( $\mu$ )

 $q_1: \Delta \epsilon_{ad}$ の収束速度を示す指標

表-3より、収束値の平均値は、BMゲージ+P接着剤で 92µ、BHゲージ+C接着剤で140µであり、前者の方が48µ 小さい、一方、収束値の標準偏差を見ると、BMゲージ +P接着剤で63µ、BHゲージ+C接着剤で80µであり、収 束値のばらつきに若干の差が見られる.また、「ひずみ 変動が収束した時点」を1日当りのひずみ変動量の絶対 値が1µになった時点と定義すると、図-8より、 $\Delta c_{ad}$ の収 束日数はBMゲージ+P接着剤では $t_{ad}$ =7(day)、BHゲー ジ+C接着剤では $t_{ad}$ =12(day)であった.

以上より、*Δε*<sub>a</sub>の収束値や収束日数は、接着条件(接 着剤の種類,接着剤の塗布厚さ等)によってばらつきが 生じると考えられる.ここで、一般に接着剤の硬化時間 は温度が高いほど早いため、今回得られた収束日数はあ くまで10~23℃の環境下でひずみゲージを接着する場合 の目安にすぎない.

# (3) グラウトによるひずみ変動 ∠ ε<sub>g</sub>の検討

a) コアの連結時におけるひずみ変動 $\Delta \varepsilon_{gu}$ 

図-9 に示す連結開始時からの経過時間  $t_{gu}$ を横軸とする試験体 Ac のひずみの経時変化に対し,式(5)でフィッティングを行い,得られた近似式のパラメータ  $p_2$ ,  $q_2$ の平均値と標準偏差を表-4にまとめた.また,1日当りのひずみ変動量  $d\Delta e_{gu}/dt_{gu}$ の経時変化を図-10に示す.

 $\Delta \varepsilon_{g.u} = p_2 \{1 - \exp(-t_{g.u}/q_2)\} \qquad \qquad \mathbf{\vec{\pi}} (5)$ 

*p*<sub>2</sub>: *Δε*<sub>gu</sub>の収束値(μ)

 $q_2: \Delta \epsilon_{gu}$ の収束速度を示す指標



表-3 パラメータ a, bの平均と標準偏差 (Asa)

|      | BM ゲー:       | ジ+P接着剤 | BHゲージ+C 接着剤  |       |  |  |
|------|--------------|--------|--------------|-------|--|--|
|      | $p_{1}[\mu]$ | $q_1$  | $p_{l}[\mu]$ | $q_1$ |  |  |
| 平均   | 92           | 1.88   | 140          | 3.30  |  |  |
| 標準偏差 | 63           | 1.69   | 80           | 2.29  |  |  |

表-4より、 *Δε*<sub>gu</sub>の収束値は、鉛直方向で-956µ、水平 方向で-686µ(共に引張ひずみ)である.同じ計測方向 で使用したグラウトが異なるデータ同士を比較すると、 収束値の平均値に大きな差異は見られない.また、図-10より、 *Δε*<sub>gu</sub>の収束日数は計測方向やグラウトの種類に 依らず約12時間である.

Acguの発生要因をグラウトの硬化変形であると仮定す ると、グラウトが膨張する場合、試験体 Ac の鉛直方向 に引張ひずみ、水平方向に圧縮ひずみが生じる.しか し、実際は鉛直・水平方向で共に引張ひずみが生じて おり、想定される現象と整合していない.

ここで、グラウト中の水分の影響に着目する.大森 らの報告<sup>4</sup>によると、炉乾燥後の泥岩供試体に対し吸水 膨張試験を行い供試体の吸水膨張率(=吸水に伴う供 試体の変形量/初期高さ)の経時変化を調べた結果、 吸水膨張率は水浸初期に急増し、その後はほとんど増 加しないという傾向が得られている.今回計測された *Acgu*はこれと類似した傾向を示していることから、*Acgu* の発生要因はグラウト中の水分による試験体 Ac の吸水 膨張ではないかと推測される.

#### b) コアセンサーの埋設時におけるひずみ変動 $\Delta \varepsilon_{ge}$

埋設直後からの経過時間 tgcを横軸とする試験体 Acの ひずみの経時変化を図-9 に示す. Accの発生要因がグラ





|      |      | 鉛直         | 方向    | 水平方向       |       |  |
|------|------|------------|-------|------------|-------|--|
|      |      | $p_2[\mu]$ | $q_2$ | $p_2[\mu]$ | $q_2$ |  |
| 令体   | 平均   | -956       | 0.061 | -686       | 0.049 |  |
| 土(4  | 標準偏差 | 122        | 0.013 | 181        | 0.012 |  |
| グラウト | 平均   | -975       | 0.062 | -683       | 0.047 |  |
| а    | 標準偏差 | 124        | 0.014 | 193        | 0.013 |  |
| グラウト | 平均   | -961       | 0.071 | -687       | 0.059 |  |
| b    | 標準偏差 | 95         | 0.005 | 114        | 0.009 |  |
| グラウト | 平均   | -838       | 0.057 | -701       | 0.051 |  |
| c    | 標準偏差 | 79         | 0.006 | 200        | 0.003 |  |

ウト中の水分による試験体 Ac の吸水膨張であると仮定 すると、図-9のAceの挙動は以下の2つの現象が重なっ て発生したものであると推測される.

- ① 試験体Acの被覆(連結時のグラウト)部分が吸水膨 張して内部のコアを圧迫し, 鉛直方向で引張ひずみ, 水平方向で圧縮ひずみが発生する.
- ② 浸潤に伴い試験体Ac内部のコアの吸水膨張が進行し、 鉛直・水平方向ともに引張ひずみが発生する.

これらの現象を踏まえ、2つの項で構成された式(6)で 図-9の各データに対しフィッティングを行った.得られ た近似式のパラメータp3, q3, p3', q3'の平均値と標準偏 差を表-5に示す.また、図-10に1日当りのひずみ変動量  $d\Delta \varepsilon_{ge}/dt_{ge}$ の経時変化を示す.

 $\Delta \varepsilon_{\text{g,e}} = p_3 \{1 - \exp(-t_{\text{g,e}}/q_3)\}$ 

+
$$p_{3}'\{1-\exp(-t_{g.e}/q_{3}')\}$$
 式(6)

ここに、tge:コアセンサー埋設時点からの経過時間(day) p<sub>3</sub>, p<sub>3</sub>': 各項の収束値(μ)

q3, q3': 各項の収束速度を示す指標

表-5より, 収束値(=p3+p3)の平均値は, 鉛直方向 で-40µ, 水平方向で-6µと, Δεmの 10 分の 1 以下である. 収束値の標準偏差(=p3とp3、の標準偏差の和)は、鉛直 方向が 68μであるのに対し、水平方向はその約4倍の 255µと大きくばらついている.同じ計測方向において使 用したグラウトが異なるデータ同士を収束値の標準偏 差で比較すると、鉛直・水平方向ともにグラウトc(鉛 直:28µ, 水平:21µ) ⇒グラウトb(鉛直:41µ, 水 平:246µ) ⇒グラウトa(鉛直:80µ,水平:288µ)の順



(h/day)

*d*t ₅.e

\_4

0.60

鉛直方向

0.75

 $d\Delta \varepsilon_{a}/dt = -1$ 

グラウトa グラウトb

グラウトc 平均

0.2

 $d\Delta \varepsilon_{g_u}/dt_{g_u}=-1$ 

-1

-3 -4 -5

-6

-10 L1 0.00

グラウトb 平均

 $d\Delta \varepsilon_{ou}/dt_{ou}=1$ 

 $d\Delta \varepsilon / dt = -1$ 

鉛直方向

クラウトa クラウトc

|      |      | $p_{3}[\mu]$ | $q_3$ | $p_3 [\mu]$ | $q_3$ | $p_{3}[\mu]$ | $q_3$ | $p_3 [\mu]$ | $q_3$ |
|------|------|--------------|-------|-------------|-------|--------------|-------|-------------|-------|
| 会体   | 平均   | -1017        | 0.911 | 977         | 0.890 | -927         | 0.568 | 921         | 0.501 |
| 土(平  | 標準偏差 | 34           | 0.283 | 34          | 0.256 | 125          | 0.118 | 130         | 0.121 |
| グラウト | 平均   | -1026        | 1.036 | 969         | 0.986 | -908         | 0.592 | 884         | 0.512 |
| а    | 標準偏差 | 39           | 0.270 | 41          | 0.251 | 143          | 0.108 | 145         | 0.107 |
| グラウト | 平均   | -996         | 0.690 | 995         | 0.721 | -987         | 0.584 | 1013        | 0.566 |
| b    | 標準偏差 | 18           | 0.136 | 10          | 0.151 | 11           | 0.156 | 10          | 0.168 |
| グラウト | 平均   | -1010        | 0.758 | 982         | 0.769 | -924         | 0.479 | 940         | 0.404 |
| с    | 標準偏差 | 20           | 0.253 | 21          | 0.259 | 133          | 0.087 | 113         | 0.064 |

に収束値のばらつきが小さい.また、図-10より、収束 日数の平均は鉛直方向が約5日間,水平方向が約4日間 であり、異種グラウト同士を比較すると、半日間~4日 間程度の差異が見られる.

使用したグラウトの違いでAce の収束値・収束日数に 差異が見られたのは、各グラウトの吸水膨張特性が異 なっているからではないかと推測される.

# (4) 水浸によるひずみ変動」∠ε \_の検討

水浸開始時からの経過時間 tw を横軸とする試験体 Ac のひずみの経時変化を図-11 に示す. 図中の鉛直・水平 方向において,水浸直後から短期間に引張ひずみが急増 し、その後は緩やかに増加する傾向が見られる. この傾 向は、前段のAcuの変動傾向と類似しているが、12時間 程度で収束するAguに対し、Aguは1週間以上の長期に 渡り変動し続けている点で異なる. このような「短期増 加」と「長期増加」を併せ持つAcwに対し、2 つの項を 持つ式(7)を用いてフィッティングを行った.得られた 近似式のパラメータ  $p_4$ ,  $q_4$ ,  $p_4$ ,  $q_4$ の平均値と標準偏差 を表-6 に示す. また, 式(7)を twで微分し得られた 1 日 当りのひずみ変動量 dAc,/dt,の経時変化を図-12 に示す.

$$\Delta \varepsilon_{\rm w} = p_4 \{1 - \exp(-t_{\rm w}/q_4)\}$$

式(7)  $+p_4'\{1-\exp(-t_w/q_4')\}$ ここに、 t<sub>ce</sub>: コアセンサー埋設時点からの経過時間(day) p3, p3': 各項の収束値(µ)

q3, q3': 各項の収束速度を示す指標



#### 表-6 パラメータ a, bの平均と標準偏差(AEw)

|      |      | 鉛直方向          |       |             |       | 水平方向          |       |                |       |  |
|------|------|---------------|-------|-------------|-------|---------------|-------|----------------|-------|--|
|      |      | <i>p</i> ₄[μ] | $q_4$ | $p_4'[\mu]$ | $q_4$ | <i>p</i> ₄[μ] | $q_4$ | <i>p</i> ₄'[μ] | $q_4$ |  |
| 令休   | 平均   | -86           | 11.54 | -201        | 0.110 | -37           | 10.08 | -144           | 0.098 |  |
| 土平   | 標準偏差 | 45            | 7.81  | 67          | 0.044 | 18            | 12.45 | 48             | 0.062 |  |
| グラウト | 平均   | -67           | 7.60  | -169        | 0.101 | -39           | 14.37 | -115           | 0.080 |  |
| а    | 標準偏差 | 47            | 6.30  | 37          | 0.018 | 24            | 16.59 | 28             | 0.025 |  |
| グラウト | 平均   | -94           | 12.93 | -305        | 0.160 | -31           | 4.28  | -212           | 0.060 |  |
| b    | 標準偏差 | 29            | 7.71  | 84          | 0.080 | 8             | 1.86  | 22             | 0.018 |  |
| グラウト | 平均   | -124          | 19.37 | -194        | 0.092 | -38           | 6.93  | -144           | 0.158 |  |
| с    | 標準偏差 | 27            | 5.40  | 26          | 0.034 | 11            | 5.39  | 38             | 0.091 |  |

表-6より,収束値(= $p_4+p_4$ )の平均値は,鉛直方向 で-287µ,水平方向で-181µ,収束値の標準偏差(= $p_4 \ge p_4$ ' の標準偏差の和)は,鉛直方向で112µ,水平方向で66µ と,鉛直方向の方が変動・ばらつき共に大きい.同じ 計測方向で使用したグラウトが異なるデータ同士を収 束値の平均値で比較すると,鉛直・水平方向ともにグ ラウトa(鉛直:-236µ,水平:-154µ) ⇒グラウトc(鉛 直:-318µ,水平:-182µ) ⇒グラウトb(鉛直:-399µ, 水平:-243µ)の順に変動が小さい.また,図-12より, 鉛直方向の収束日数が約24日間であるのに対し,水平 方向は約14日間と,差が顕著であった.

# 4. まとめ

コアセンサーの計測結果におけるひずみ変動について, 以下の知見が得られた.

- 実測値に既往の補正方法を適用し、温度変化による ひずみ変動Agの除去が可能であることを確認した.
- ゲージ接着剤によるひずみ変動Acaは、7~12日間で +30~+220µ(圧縮ひずみ)に収束する.
- ③ グラウトによるひずみ変動∆gは、連結時は約12時間で-500~-1100µ(引張ひずみ)に収束し、埋設時は4~5日間で-250~+250µに収束する.
- ④ 水浸によるひずみ変動∆€wは、14~24日間で-400~-115µに収束する.

#### 参考文献

- 高倉望,岡田哲実,谷和夫,吉川和夫,澤田昌孝,竹田佳 代:高温下における堆積軟岩の原位置クリープ試験計画, 第36回岩盤力学に関するシンポジウム,pp263-266,2007.
- 2) 高倉望,池野谷尚史,岡田哲実,澤田昌孝,平賀健史,平 野公平,谷和夫:ボーリングコアを用いた岩盤中のひずみ 計測方法の適用性について、土木学会第62回年次学術講演 会,pp457-458,2007.
- 3) 株式会社東京測器研究所:ひずみゲージ特性ガイド
- 4) 大森慎哉,小峰秀雄,安原一哉,村上哲:蒸留水および人 工海水環境下における堆積性軟岩の一次元吸水膨張変形特 性,土木学会第61回年次学術講演会,2006.

# Laboratory Experiment to Investigate Correction of Embedded Strain Sensor

# Kazuo TANI, Yuichi TANAKA, Tetsuji OKADA, Kohei HIRANO, Nozomu TAKAKURA and Takafumi IKENOYA

A new monitoring method for measuring in-situ ground behavior was proposed. The embedded type sensor used in the method is called "Core sensor", which is drilled cores equipped with strain gauges and thermocouples. This method has already been tested in an underground cavern at a depth of 50m, but the strain data represents not only deformations of the ground but also strain changes caused by various factors. Therefore, a series of laboratory experiments were conducted to evaluate the strain changes due to temperature change, the gauge adhesive, the grout and water. As a result, it was succeeded to acquire knowledge about the necessary period for convergence of the strain changes and their unevenness.