光ファイバーを利用した原位置 A E センサの開発

畑浩二¹*·宮崎裕光²·田仲正弘³·布谷勝彦³·斉藤義弘³·藤井宏和³

¹株式会社大林組 技術研究所地盤技術研究部(〒204-8558 東京都清瀬市下清戸四丁目640) ²株式会社大林組 波方ブタンJV(〒799-2104 愛媛県今治市波方町宮崎甲147) ³株式会社レーザック(〒113-0033 東京都文京区本郷3-40-9)

光ファイバーには、長寿命、長距離伝送、高絶縁性、耐腐食性、可撓性などの優れた点が多い、近年、 光のドップラー効果を応用することで、固体材料の微小破壊を検知できる可能性が示唆されている、 本研究では、これらの特性を応用し構造物の非破壊モニタリングに活用できる新しい光式AEセンサを 開発した。特徴は以下の通りである.1)従来型ピエゾ式AEセンサより広範囲な周波数帯域(ピーク周波 数20~90kHz)をカバー可能.2)センサ形状を任意に変えることで周波数特性を簡単に変更することが 可能.3)センサへの電源供給が必要無いため、特別な対策を施すことなく長寿命かつ防爆構造が可能.4) 上記特性から、エネルギー備蓄、放射性廃棄物地層処分などのモニタリングツールとして期待できる.

Key Words : optical-fiber, acoustic emission, long-term monitorin, fiber optical doppler sensor

1. はじめに

固体の微小破壊現象を計測する方法としてアコーステ ィック・エミッション(Acoustic Emission,以下 AE と 略す)技術が注目され、さまざまな分野に利用されてき た.例えば、金属分野や複合材料分野 いでは、航空機、 潜水艦、電車などの材料疲労破壊の評価や予測がある. 建設分野では、トンネル、斜面、ダム基礎などで活用さ れている.畑らは、岩盤地下空洞に対し、設計で重要な パラメータとなる初期地圧測定 2やゆるみ域評価 3.4に 利用している.通常、これらの計測ではピエゾ(圧電素 子)式 AE センサを利用している.この場合、センサへ の入力波動を微小電流に変換し、プリアンプで増幅する ことから、電気式センサというカテゴリーに分類される. そのため、現場での計測環境によってはセンサ本体のみ ならず、接続ケーブル、プリアンプの防水性や防爆性に 注意を払う必要がある.

最近,光ファイバーセンシング技術を応用した上記ピ エゾ式とは全く異なるカテゴリーの AE センサが開発さ れた.これは FOD (光ファイバードップラー) センサ と称され,センサに入力した微小振動によりセンサ自体 が伸縮することでファイバーを通過する光に周波数変調 が生じる現象を利用したものである.本センサは開発の 途に着いたばかりで,利用範囲は室内実験レベルの域を 出ていない. そこで、本研究では、地盤や岩盤を対象にして現場で 使用できる光ファイバードップラーセンサ(以下、光式 AEセンサと称す)の開発を目的とした.

2. 光AEセンサの原理

光式 AE センサは、影山ら⁵により発見された「導波 路を伝播する光のドップラー効果」という新しい原理に 基づいた振動・音響センサである.

図-1 光式 AE センサ部(赤点線枠内)

光式 AE センサでは、対象物から発せられる振動エネ ルギーの検出を行う.計測対象物が振動すると図-1 に 示す固着したセンサ部(図中、赤点線枠内)もその振動 に併せて伸縮する.その時、固着部の一端から周波数 f_0 の波を入力していると、経路長が伸縮すれば波長が変化 することになる.すなわち、光の伝播速度は一定である から周波数が f_a だけ変化することになり、他端から出力 される光波の周波数は $f_0 - f_a$ となる.この周波数変調量 f_a は光ファイバーの伸縮,すなわち被計測物の変位量の 変位(ひずみ)速度に比例することから, f_a を検知する ことができれば,被対象物の振動を捉えることができる ことになる.

光ファイバーが伸縮する際に,ファイバー内のドップ ラー効果により生じる周波数変調は(1)式で示される.

$$f_d = -\frac{1}{\lambda} \frac{dL}{dt} \tag{1}$$

ここで、 f_a はセンサ部で生じる周波数変調、 λ は光波 の波長、dL/dtは光ファイバーの変位速度である.ここ で負号は、変位速度の増大により光の周波数が低下する ことを意味している.(1)式に示すように、周波数変調 f_d と変位速度 dL/dtは比例関係となる.この周波数変調 f_a は光ヘテロダイン干渉法を用いて検出され、周波数/ 電圧変換器(FV 変換器)によって電圧 Vに変換される. ここで、光ヘテロダイン干渉法とは、周波数がわずかに 異なる2つの波を重ね合わせ、その周波数の差に等しい 「うなり」「ビート」から必要な情報を取り出す技術で ある.

変換された電圧 Vと変位速度 dL/dt の関係を, K (= -kA) を比例定数として示すと(2)式のようになる. したがって, 光式 AE センサは検知した変位速度を電圧で出力するセンサであり,変位速度が大きくなると電圧出力が大きくなるという特性を持つ.

$$V = kf_d = -\frac{k}{\lambda}\frac{dL}{dt} = K\frac{dL}{dt}$$
(2)

周波数変調 f_d を検知するためのレーザードップラー 振動計システムを図-2 に示す. このシステムは、セン サ回路と計測回路から構成されており、計測回路がヘテ ロダイン干渉法を用いて周波数変調量を検出することに なる.

図中,光源から入射された周波数 f_0 のレーザー光は, 分岐部でセンサ回路と計測回路に分波される.センサ回 路では,計測対象物の振動によってファイバー部が微小 伸縮すると,それに伴いファイバーの光路長が時間的に 変動する.その結果,レーザー光には光路長の時間的変 化である dL/dt に比例した周波数変調 f_d が生じ,セン サから出力されるレーザー光は f_0-f_d となる.一方,計 測回路では周波数変調器により周波数 f_M (80MHz)の 基準光を加え f_0+f_M に変調される.そのため,センサ回 路からのレーザー光と計測回路からのレーザー光の周波 数の差 f_M+f_d が導かれ,検知器により周波数変調 f_d が検 出され,周波数/電圧変換器で電圧値に変換されること になる.

3. センサ形状の検討

上述した原理に基づき,当初開発された光式 AE セン サは,図-3 に示すように 2m の光ファイバーを円形状 に 50 回巻き付けエポキシ樹脂で固めた形状である.外 径 21mm,内径 5mm,厚さ 1mm の膜状構造をしてい るため,可撓性に優れ湾曲した対象面への設置も容易で ある.その後,藤井ら⁶は,感度向上を目指し円筒積層 型に改良し室内岩石試験に適用した.しかし,これらの センサでは 150kHz 程度の高周波数帯域対応のため,こ れをそのまま原位置に利用することは監視領域が広くと れず不都合である.そこで,著者らは,地下空洞を対象 に AE 計測してきた実績を勘案し,測定対象周波数を 20~90kHz (ピーク周波数を 30kHz)程度となるよう なセンサ形状を検討することとした.

(2)式に示すように、光式 AE センサはセンサ部の長さ dL が長くなればなるほど出力電圧 V が高くなる特性が ある.出力電圧が高くなるということは、感度が高くな ることを表している.そこで、上述した円筒積層型を基 に、センサ形状の最適化を検討した.検討に際しては FEM による周波数応答解析を利用し、基本形状を選定 することとした.解析および評価の手順を以下に示す.

図-3 初期型光式 AE センサ

(1) FEM モデルの作成 光式 AE センサを光ファ イバー(石英ガラスファイ バー)とエポキシ樹脂から なる積層部材として扱う. 本センサは何らかの金属筐 体に内蔵し原位置で使用す ることを勘案し,受波面を 金属筐体に固定することで モデル化する.図-4 にモデ

ル化の構造を示す.石英の弾性係数約 70GPa,エポキ シ樹脂の弾性係数約 3GPa,ファイバーの体積比率,フ ァイバー構造(コア,クラッド,被覆)等を勘案し,解 析入力物性を決定した.

(2)固有値解析

センサ形状による固有振動を確認するため,固有値解 析を行う.本開発では、30kHz 周辺の周波数特性に着 目しているため、具体的には 0~100kHz の範囲におい て固有値を算定する.ただし、振動方向は考慮していな いため、実際の入力波動に対して共振点となるか否かは 後述の感度試験で検証することになる.

(3) 周波数応答解析

上述の固有値解析で得られた各固有値において,単位 励起振動(正弦波)に対するモデルの挙動を算定する. 光式 AE センサの実使用を勘案し,完全拘束(接着を模 擬)した受波面を加振点とする.モデルの挙動はひずみ 速度で評価する.なお,周波数応答解析では,センサ形 状による振動特性を評価することは可能であるが,全検 討モデルで統一的に出力感度を評価することはできない ため後述する感度試験で確認することになる.

上述した手順に基づき,図-5 に示す円筒形,円錐台 形①,②および楕円形で原位置計測に適した形状の検討 を行った.なお,AE 信号波が入力される受波面は図中 の下面である.

各種形状における周波数応答解析結果の一例を図-6 に示す. 円筒形および円錐台形を黒線で, 楕円形横置き を青線で,円筒形および楕円形縦置きを赤線で示す.そ れぞれの形状の内、円筒形と円錐台形はいずれも比較的 高い周波数領域でピークが来るため、原位置での使用に は適さないと考えられる. 楕円形を横置きにした場合, 10kHz 近傍でピークが得られることから低周波数領域 への展開には希望が持てる.一方,円筒形および楕円形 の縦置きでは、同様に 10kHz でピークが来ると同時に、 それより高い周波数領域の複数箇所でピークが来る特異 な周波数応答特性を得た. この複数あるピークに関して は、変形モードを解析した結果から、不必要な変形モー ドを低減するような拘束具を取り付ける工夫を施すこと でピーク周波数の制御が可能であることが明らかになっ た. 原位置 AE 計測の測定対象周波数を 20~90kHz (ピーク周波数を 30kHz) となることを開発のコンセ プトにしていることから、ピークが複数存在する周波数 特性はむしろ有効であると考えられ、この円筒形および 楕円形の縦置きタイプが最も有力であると判断した.

以上,解析による最適形状の検討を行い,図-7 に示 す原位置専用の光式 AE センサ(楕円形の縦置きタイ プ)を試作した.センサ下部(受波面)にはピーク周波 数を制御するエポキシ樹脂製の拘束具を取り付けている.

4. 性能確認試験

試作した光式 AE センサの仕様は、ファイバー長さ 65m、長径 26.0mm、短径 15.5mm、厚さ 15.0mm であ る.上述した数値解析では、低周波数帯域でピーク周波 数を有する形状になったが、その適否を検討するため下 記に示す感度試験とコンクリート供試体を利用した室内 試験による検証を行った.

(1)感度試験

試作センサの実質周波数特性を face to face 試験法(接触法) で確かめた.計測装置のブロックダイアグラムを 図-8 に示す.図に示すように,発振センサと受振セン サを直接接触させ,入力に対する試作光式 AE センサの 出力感度を調べるものである.発振センサは,原位置 AE 計測で実績のある 30kHz 共振型ピエゾ式 AE センサ を用い,振幅一定正弦波の周波数をファンクションジェ ネレータで種々変え発振した.また,比較のため, 30kHz 共振型ピエゾ式 AE センサも感度試験に供した.

図-8 face to face 試験法のブロックダイアグラム

測定結果を図-9 に示す. 図中,赤線で円筒形(外径 19.2mm,内径 8mm,厚み 6mm)および楕円形の光式 AE センサを,黒点線で 30kHz 共振型ピエゾ式 AE セン サの感度特性結果をそれぞれ示す.その結果,楕円形の 方が円筒形より 50kHz以下の感度特性に優れること,ピ エゾ式 AE センサと比較しても楕円形光 AE センサは感 度特性に遜色が無く,50~80kHz の周波数帯域において はむしろ感度が高い特性が明らかになった.

以上の結果から,楕円形光式 AE センサは従来のピエ ゾ式 AE センサと比べ同等以上の性能を発揮するものと 評価でき,優れた計測ツールが開発できたと考えられる.

(2) コンクリート供試体による性能試験

上述の face to face 試験では、人工的に作った信号波に よる感度試験であり、実材料による低周波成分波の検知 ではない.厳密に言えば、実材料から発生する AE 信号 の内、低周波成分が検知されていることを検証しておく ことが重要である.そこで、コンクリート材料を利用し、 低周波成分検知の性能試験を実施した.

コンクリート角柱供試体(10×10×53cm)を用いて, 破壊に至る単調的な一軸圧縮載荷および繰返し載荷条件 下で AE を計測する. 試作した光式 AE センサを供試体 側面に 4 か所設置した. その内, 3 か所については 30kHz 共振型ピエゾ式 AE センサを併設し,両者の感度 特性を比較することで性能評価することとした. 図-10 にセンサレイアウトを,図-11 に試験装置のブロックダ イアグラムを示す.

破壊に至る単調的一軸圧縮載荷条件下での試験結果を 図-12 に示す. 図は,同じ箇所に設置した光式 AE セン

図-11 試験装置のブロックダイアグラム

サ (図中は FOD と表記) lch と 30kHz 共振型ピエゾ式 AE センサ (図中は PZT と表記) 5ch の計測結果である. 図は上段から, FOD (左図) と PZT (右図) における応 カー載荷時間-AE 発生数の関係,最大振幅値-載荷時 間-AE 発生数の関係,重心周波数-載荷時間-AE 発生 数の関係をそれぞれ示す.

応力-載荷時間-AE 発生数の関係(上段)において, 載荷から数分間は数個~10個/秒程度のAEが発生し, この状態が 30MPa 程度まで続く. 30MPa を境に,発生 する AE は急激に増加し,約 34MPa の破壊時には約 200 個/秒の AE を観測した.対応する PZT 5ch については, 同様に 30MPa を境に観測される AE が急増した. FOD と PZT で感度が異なるため, AE 発生数を直接比較する ことに意味は無いが,概ね AE 発生数や発生傾向は同等 になった.

次に振幅値(中段)について評価する.振幅値は感度 の影響を強く受けるため,AE発生数同様絶対値の比較 はできないため振幅値の変化の傾向で確認する.FOD

図-13 単調一軸圧縮載荷条件下での周波数解析結果

および PZT のいずれも破壊前の AE の増加に伴い振幅値 と振幅累積値は同様な上昇傾向を示していることが明ら かになった.

最後に周波数(下段)について評価する.振幅値と同 様にFOD,PZTのいずれもAEの発生数の変化に応じた 周波数の変化を示しており,破壊直前にやや周波数が上 がり,破壊時に低下する特徴が見られる.周波数帯域に はやや違いが見られ,FODは40~70kHz,PZTは30~ 60kHzの範囲でありFODの方がやや高い周波数帯とな っているものの,大局的には低周波数帯域でのAE信号 波受振に成功していることがわかった.

周波数に関して、さらに詳細な検討を行った. 図-12 に示した周波数は重心周波数であり、センサの周波数特 性にあまり依存しない形で周波数特性を評価できる利点 がある反面、個々の受振波の周波数特性はわかりにくく なる. そこで、全センサで重心周波数とピーク周波数の 比較を示したものが、図-13 である. ここで、ピーク周 波数は受振波の直接的な周波数解析結果であり、 センサ 周波数特性を明瞭に表している.得られた結果から、ピ ーク周波数に関して FOD は 20~90kHz の広い範囲に分 布しているが、PZTは 20~60kHz と狭い範囲に限られて おり, 60kHz 以上の周波数帯の感度が低い結果となって いる. したがって, 相対的に光式 AE センサの方が 30kHz 共振型ピエゾ式 AE センサより高感度に仕上がっ ていると評価できる.また、開発のコンセプトである測 定対象周波数を 20~90kHz (ピーク周波数を 30kHz) を十分満足する特性を得たものと考えられる.

5. まとめ

周波数応答解析によるセンサ形状の最適化検討を基に、 光式AEセンサを試作した.次いで、face to face 感度試験 とコンクリート供試体による性能試験を通して 20~ 90kHz を測定対象にすることが可能であることを明らかにした. さらに,原位置で使用実績のある 30kHz 共振型ピエゾ式 AE センサより高い周波数帯域にも優れた感度特性を有していることが明らかになり,原位置で実用に供することが可能な光式 AE センサが開発できたものと判断した.

光式 AE センサには、長距離伝送、電源供給不要、電磁ノイズ影響小、高絶縁性、耐腐食性、長寿命、軽量などの優れた点が多い.特に、電源供給を必要としないことから湿度の高い環境条件下で長寿命計測が可能になることや、揮発性の爆発ガスが内在したり不測に噴出したりする環境条件下でも特別な処置を施すことなく計測が可能になる利点は大きい.今後、原位置での適用を通じて超長期モニタリング方法の確立を目指す.

参考文献

- 1) 最新 AE 技法, 応用技術出版, pp.222~223, 1980.
- 畑 浩二,道廣一利,吉岡尚也,杉原弘造:AE 法を利用 した初期地圧測定とその適用例,材料,特集岩石力学,第 44巻,第502号, pp.885~890, 1995.
- 3) 畑 浩二,松井裕哉,木山英郎,木梨秀雄:AE法を利用した地下空洞掘削影響領域評価に関する研究,土木学会論文集,No.715/III-60, pp.251~262, 2002.
- 4)畑浩二,宮崎裕光,小笠原光雅,前島俊雄,青木謙治:AE法を用いた波方LPG岩盤貯槽掘削におけるゆるみ域評価,第39回岩盤力学に関するシンポジウム講演論文集,pp.139~144,2010.
- 5) 影山和郎,金原 勲,鈴木敏夫,大澤 勇,村山英晶,犬 養泰彦:レーザドップラ光ファイバセンサによる AE 波検 出の試み,日本機械学会第 75 期通常総会講演会講演論文 集(II), No.98-1, pp.94~95, 1998.
- 6)藤井宏和,森 孝之,斉藤義弘,田仲正弘,町島祐 ー:光ファイバ式 AE センサ(FOD)による硬岩と軟 岩の破壊時の AE 特性,第17回アコースティック・エ ミッション総合コンファレンス,pp.99~102,2009.

DEVELOPMENT OF IN-SITU AE SENSOR TO APPLY OPTICAL FIBER

Koji HATA, Hiromitsu MIYAZAKI, Masahiro TANAKA, KatsuhikoNUNOTANI[,] Yoshihiro SAITO and Hirokazu FUJII

In the optical fiber, there are a lot of advantages with long life, resistance to corrosion and flexibility, etc. Recently, it was clarified to be able to measure AE by using the Doppler effect of light.

In this research, a new AE optical sensor that was able to monitor the rock mass failure around underground structure was developed. The feature of the developed new AE sensor is shown below.

- 1) It is possible to cover the low frequency band (20-90kHz).
- 2) Long life and the explosion-proof construction are possible without doing a special device.
- 3) It is possible to expect it as a monitor tools of the energy strage and radioactive waste, etc.