静水圧増加に伴うS波速度変化と内部構造変化 —砂・シルトコアの場合—

高橋 学1*・高橋 直樹²・安 昶完³・竹村 貴人⁴

¹産業技術総合研究所地圏資源環境研究部門 ²三井・住友建設技術開発センター ³埼玉大学大学院理工学研究科 ⁴日本大学文理学部地球システム科学科 *E-mail: takahashi-gonsuke@aist.go.jp

地表サンプルから深度方向の物性データを評価するため、応力(静水圧)と内部構造変化(空隙サイズ 分布)との関係を既存ボーリングコアを用いて明らかにすることを目的とした.菖蒲町コアを用いた室内 計測結果では、10MPaの静水圧増加に伴いP波速度は600m/sの速度増加を、S波速度は300m/sの速度増加を示 した.静水圧の増加に伴う内部構造変化を把握するため、μフォーカスX線CTとCT用圧力容器を用いて深 度400mに相当する圧力10MPaにおけるデータ取得を行った.空隙が中心と考えられる領域にターゲットを 絞り、その領域の幾何学情報を抽出した.

Key Words : depth dependency, S wave velocity, inner structur, geometry in the low density region, three-dimensional geometrical information

1.はじめに

P,S波速度は地下構造物設計時や液状化対策および評 価時には重要な物性定数となる.特に,原位置計測で得ら れたS波速度の値は有限要素法を用いた動的解析には必 須のパラメータである. Yamamizu(1996)¹⁾は岩槻, 下総, 府 中における深度3000mの深井戸を用いたP/S波速度計測 をシステマティックに計測している.これは地震学や地 震工学的な観点からの実施である. Brocher(2005)²は北カ リフォルニア地域を対象として数種の岩石に対してP波 速度の深度依存性に関する経験式を提案している. これ らの解釈を行う場合には粒状体としての取り扱いを念頭 に置かなければならず、Gassman(1955)³の理論の適用が一 般的におこなわれている.この場合, P/S比が弾性論で考 えられる範囲内にあることが必要であるが、原位置にお けるS波速度値が小さすぎる場合が多い、本文で紹介する 様に特に深度が浅い状況では、P/S波速度比が5以上と高 い値を示す場合が多い. そこで、porous mediaの取り扱いの プロセスを捨て、内部構造変化とコアサンプルにおけるP, S波速度の精密計測から静水圧の増加に伴う空隙を多く 含む領域の幾何学情報を抽出し、その情報から速度変化 を説明する可能性を探った. 得られているボーリングコ

アは数量的に限られていることから、原位置情報の再現 を室内試験で再現する手段としては妥当と考えられる.

静水圧条件下における空隙構造の幾何学情報抽出には, μフォーカスX線CTと専用の圧力容器,3次元CT volume dataの解析にはVGStudio.Max, EXFact.Analysisを用いた.本 論文では,原位置・室内弾性波速度の深度依存性を紹介 し,その後コアサンプル内低密度領域の幾何学情報の静 水圧依存性について述べる.これらのデータを用いた原 位置P,S波速度の変化に関する議論は今後の課題とし たい.

2. 菖蒲コアサンプル

関東平野中央部の地質構造と地下水流動系を明らかに する目的から、関東平野の中央部に位置する埼玉県菖蒲 町において、すでに存在しているボーリング孔を利用し て追加掘削と検層を行い、深度150m~350m オーダーま での地下地質構造と地下水質を明らかにした.

ボーリング孔を利用して,P波速度及びS波速度検層 をサスペンション法にて実施した.測定区間は150m~ 350mまで1m以下のピッチで行っている.その他物理検 層として,キャリパー検層,電気検層,温度検層も併せ て実施している

図-1は水銀圧入式ポロシメータで得られたコアサンプルの空隙率と空隙サイズ分布である.空隙率は25%~36%まで分布している.間隙比で表わすと0.35~0.6以上の値を示すことになる.なお、ここで得られる空隙は、岩石を対象として得られたデータとは異なり、空隙を多く含む領域と考える方が妥当である.CTデータにおいても確認できることではあるが、特に水銀ポロシメータで得られる100ミクロン以上の単一の空隙の存在は実際には確認困難であり、むしろ密度の低い空隙の多い領域と考えるのが妥当と思われる.

3. P/S波速度の静水圧依存性

MTS 社製の三軸試験装置 MTS815を用いた.本試験装置は,図-2 に示すように載荷フレーム,軸アクチュエータ,圧力容器,封圧発生装置,間隙圧発生装置,制御装置および制御コンピュータで構成される.制御系はデジタルサーボシステムで構成されているため,精度の高い制御が可能である.図-3 は供試体のアッセンブルの状態を示している.軸変位計,周方向変位計,間隙水圧ライン,S波センサーおよび同軸ケーブル,そして内部ロードセルが配してある.表-1 は実験中に得られた軸ひずみ,周ひずみ,体積変化,設定封圧および間隙水圧の各値を示している.さらに図-4 は静水圧と体積ひずみの関係を示

した. 3MPaの低圧域における体積収縮量の大きさが特徴的である.

図-2 実験に用いた三軸試験装置概念図

実験中の供試体アッセンブルの様子

Inner Load Cell

Pore Pressure Line Lateral Displacement Transducer

S'wave sensor

図-3

図-1 水銀ポロシメータで得られる菖蒲コアの空隙率と空隙サイズ分布

表-1 試験結果一覧

平均軸ひずみ	周ひずみ	体積ひずみ(収縮量+)	供試体体積変化量 (cm ³)	設定封圧 (MPa)	設定背圧 (MPa)
				0.0	0.0
-0.00014613	0.00068683	0.00122754	0.244	0.0	0.0
-0.00144038	0.00814594	0.01485150	2.957	3.5	1.0
-0.00083813	0.00892321	0.01700830	3.386	6.0	1.0
-0.00063575	0.00922393	0.01781212	3.546	8.5	1.0
-0.00037725	0.00955163	0.01872601	3.728	11.0	1.0
-0.00015538	0.00991416	0.01967294	3.916	13.5	1.0
0.00010738	0.01027643	0.02066023	4.113	16.0	1.0
0.00075988	0.01061359	0.02198705	4.377	18.5	1.0
0.00116050	0.01078631	0.02273313	4.526	21.0	1.0
0.00097313	0.01114230	0.02325773	4.630	23.5	1.0
0.00121425	0.01142590	0.02406604	4.791	26.0	1.0

図-4 体積ひずみと有効封圧の関係

図-5 静水圧依存性

図-6 室内弾性波速度深度依存性

用いたセンサーはセラミック製のS波振動子、共振周 波数が 100KHz のものを用いた. 寸法は 10mm 立方であ る. 図-5 は P 波・S 波速度の静水圧依存性の結果を示 している. P 波, S 波とも静水圧 15MPa までは僅かな速 度増加を示しているが、静水圧 20MPa にかけ大きく増 加している.25MPaの静水圧増加に伴いP波速度は最終 的に 0.6km/sec の速度増加を, S 波速度は 0.3 km/sec の速 度増加を示した. また, これら速度増加の値は, 原位置 におけるコアリング時の現場計測結果と比較すると小さ な値を示している. そこで、室内実験データと原位置ロ ギングデータを詳細に比較するために図-6 に示すよう に整理した. 室内実験データは平均密度を 2.5 と仮定し て静水圧から深度へ換算した. 深度 300m 程度までは P 波速度の室内・原位置データの整合性を認める事ができ る. 水の P 波速度が 1.5Km/sec なので、これよりも大きな 値を示しており、物理的にも正しい値を示している.一方, S 波速度においては室内データとロギングデータとは大 きくかけ離れており、また深度依存性も大きく異なって いる.

原位置測定結果と室内試験結果を同時に比較すること は正確には正しいことではない.すなわち,用いている弾 性波測定装置の違い,測定手法の違い,センサーの違い, 他実際の地盤とコアリングし整形したコアサンプルとの 構造上の違いなど,その差異は多岐にわたり,かつ両者を 補正し検討できるだけの基礎データは存在しない. Gassman(1951)³における Ponous Media 中の P/S 波速度は次 式で与えられる.

$$V_{p}^{2} = \frac{1}{\rho} \left(K + \frac{4}{3}G \right) = \frac{3(1-\nu)}{(1+\nu)} \frac{K}{\rho}$$

$$V_{s}^{2} = \frac{G}{\rho} = \frac{3(1-2\nu)}{2(1+\nu)} \frac{K}{\rho}$$
(1)

ここで、ρはバルク密度、Kは体積弾性率、Gはせん断剛性 率、νはポアソン比を示す、上式で明らかなように、S波速 度は"G"の大小により大きく影響を受ける、仮に、原位置 におけるS波震源の過大な入力(せん断応力)により、高い 飽和度、高い間隙比(間隙率)条件下で大きなせん断変位を 生じさせたと考えると結果として"G"を低く評価したこ とになり、S波速度は小さい値を取らざるを得ない(竹村 他⁴)、したがって、Gassman(1951)³⁰の Porous Mediaを対象と した理論の当てはめを原位置データに対して実施するこ とを断念し、コアサンプルレベルでの議論を以下に行う、 静水圧の増加に伴うコアサンプルの内部空隙構造の変化 と幾何学情報の抽出に焦点を絞る.

4. 内部空隙構造の静水圧依存性

図-7 大気および静水圧 10MPaの輝度値ヒストグラム

 図-8 6×6×42 mm で領域内における密度情報(a) 原画像における低密度領域 (輝度値 11790 以下) (b) 差画像における 高密度領域 (輝度値 1150 以上)

マイクロフォーカス X線 CT を用いて, 直径 10mmの 菖蒲コアの 3 次元ボリュームデータを作成し, 更に最大 静水圧 10MPa を負荷した状態で再度 3 次元ボリューム データを取得した. このときの輝度値のヒストグラムは 図-7 のようになる. 10MPaの静水圧の負荷により, 輝度値 分布は右側, 即ちバルクとしての密度が大きくなったこ とを示している. 当然の事ながら静水圧の負荷に伴い,空 隙部の閉鎖や実質部の集中により平均値としての密度が 大きくなることは容易に想像できる. そこで, インタクト 状態における低密度領域(図-7 において 11790以下)と 差画像即ちインタクト状態と静水圧 10MPa 負荷状態の 差画像を取得し, 密度差が 1500 以上の領域を示したもの をそれぞれ図-8 (a), (b) に示す. 図-8 (a) において密 度が低いということは輝度値の範囲からも空隙を多く含 んでいる領域と考えることができ,静水圧を負荷するこ とによって,より多くの空隙部分が閉鎖し,結果として差 分をとることによって大きな密度差を示していることに なる.したがって,図-8に示した(a)(b)両者に表示さ れた領域はほぼ一致していることが認められる. 6mmx4.2mmという小さな領域であるが,静水圧負荷によ り密度が大きく増加した領域が確認できたことになる. これは静水圧による空隙領域の閉鎖を考えると説明でき, 体積歪は約2%の収縮を示す結果とも整合するものであ る.

5. Medial Axis Analysisについて

図-9 空隙中心軸の2次元概念図

X線CT装置から得たスライス画像を入力し、その構 造に応じて三次元構造を記述し、サンプルごとの特徴を 様々に分析することができる. 従来, こうしたサンプル を画像として撮像することはできたが、その評価・解釈 は困難であった.本ソフトウェア (ExFactAnalysis,日本ビ ジュアルサイエンス)を用いることで、多くの欠陥や空 隙を持つ試料のX線CT画像データに関してその三次元 構造や形態を解析・評価することができる. 処理の概要 は以下に述べるとおりである. 図-9 は多孔質媒体を粒子 (grain)と空隙 (pore) で近似し、その状態を模式的に示 した図である.空隙部分のみに注目すると、粒子間距離が 最小となる箇所(図中赤の点線で表示)とそこよりも長 い箇所が存在する.この場合,粒子間の距離が最短とな るので、これを throat (以下、「スロート」と称する) と定義し、スロートとスロートとにはさまれたスロート よりも距離がある部分を nodal pore (以下, 「ポア」と 称する)と定義する.ポアは当然の事ながら複数粒子に 囲まれた領域を示し、スロートを介して他のポアと接続 することになる.同図においてポアP1は4個の粒子に囲 まれているので、この場合 coordination number(以下、配位数 と称する)は4となり,同様にポアP2は配位数3となる.

図-11 ガラスビーズのバーンナンバー分布

Medial axis とはその名のとおり, 球であればその中心を 通り,円柱であれば断面の中心を通る回転中心軸に相当 する.一般的には不定形な3次元形状において medial axis を決定するには"burn algorism" (Lindqusit et al.(1996)⁵)が 採用されている. 図-10 は図-9 の右上の一角を拡大表示 し、"bum"アルゴリズムの概念を示したものである.同 図にてグレイ領域は粒子をそれ以外は空隙領域を示して いる.この2次元平面上にてボクセル単位で表示し,粒子 に接している boxel から "burn layer 1" として定義し,離 れるごとに "burn layer 2", "burn layer 3" と定義する. こ の操作を各粒子境界から実施し、"burn number"の高い、 しかも同じナンバーのボクセルを"medial voxel"と定義 することにより、"medial axis"が得られることになる.最 終的に"medial axis"を決定するための種々のアルゴリ ズムに関しては Lindquist et al.(1996) 5に詳しく述べられて いる. ちなみに図-11 は検証用のデータとして取得した ガラスボール(ϕ 600 μ)における "burn number"の頻度分 布を示している. "burn number 3" ~ "burn number 5" のボ クセルが卓越していることを示している.

図-12 空隙領域の寸法分布における静水圧変化

図-12 は既述した Medial Axis 解析による CT 画像を用 いた空隙幾何解析によって得られた結果を示している. 空隙を多く含んでいると考えられる低密度領域をポアと 定義して,このポアの静水圧増加に伴う半径の変化をヒ ストグラムに表示したものである.静水圧の負荷に伴い 大きなポア領域の数が減少していること,小さなポア領 域において数が増えていることなどが示されており,記 述の差画像の結果とも整合する.このように静水圧の負 荷により,コアのバルクとしての密度増加(空隙部の減 少に相当)が引き起こされ,結果として S 波速度の増加 がもたらされたものと解釈することができ,空隙部の寸 法変化を具体的な数値として評価することができた.

6. まとめ

コアサンプルを用いてS波速度データの深度依存性を 評価するため,静水圧の増加に伴うP/S波速度と内部構 造変化(空隙サイズ分布)との関係を調べた.用いた菖 蒲町コアは深度350mに及ぶオールコアサンプルであり、 深度130m付近では砂およびシルトから構成されている. 10MPaの静水圧増加に伴いP波速度は最終的に600m/sの速 度増加を、S波速度は300m/sの速度増加を示した.原位置 におけるコアリング時の現場計測結果と比較すると小さ な値を示している. 当該サンプルを用いてマイクロフォ ーカスX線CTにて静水圧増加に伴う空隙構造変化を把握 する実験を行い、静水圧の増加に伴うバルク密度の増加 をリアルタイムで確認することができた.また,空隙を中 心とする低密度領域の幾何学的情報の抽出も検出できた ので、これら3次元幾何学情報データの静水圧による変化 と併せ議論することができた. 今後は増加したバルクの 密度変化や空隙サイズの情報からP/S波速度増加を定量 的に示すことが必要である.

参考文献

- Yamamizu, F: Down-Hole Measurement of Seismic Wave Velocities in Deep Soil Deposits beneath the Tokyo Metropolitan Area, *Report of the National Research Institute for Earth Science and Disaster Prevention* 56: 1-32, 1996.
- Brocher, T. M.: Compressional and Shear Wave Velocity Versus Depth in the San Francisco Bay Area, California: Rules for USGS Bay Area Velocity Model 05.00, USGS Open-File Report 05-1317, 1-58, 2005.
- Gassman, F: Elastic Waves Through A Packing of Spheres, Geophysics, 16, 673-685, 1951.
- 4) 竹村貴人,小田匡寛,赤間友哉.,木村克己,中西利典:沖縄層の 動土質力学的特性から見た堆積環境の重要性,地球惑星関連 合同会,Q140-007,2008.
- Lindquist, W. B., Lee, S.-M., Coker, D. A., Jones, K., W. & Spanne, P. :Medial axis analysis of void structure in three-dimensional tomographic images of porous media., *Journal of Geophysical Research* 101 (B4), 8297-8310, 1996.

S WAVE VELOCITY AND INNER STRUCTURE CHANGE WITH INCREASING HYDROSTATIC PRESSURE - SILT WITH SAND CORE SPECIMEN -

Manabu TAKAHASHI, Naoki TAKAHASHI, Changwan AHN and Takato TAKEMURA

To evaluate a depth dependency on S wave velocity using core samples, we investigated the relationship between P/S velocity change with increasing hydrostatic pressure and inner structural change of the samples taken from the Shobu borehole. P and S wave velocity changes were measured under increasing hydrostatic pressure up to 25 MPa, and increased by 600 and 300 m/sec, respectively. We took three-dimensional X-Ray CT volume data and analyzed distributions of geometry in the low density region under intact and pressurized conditions. The observations of P and S wave velocities can be interpreted as inner structural changes of frequency and average radii on the spatially distributed low density region.