含水飽和した岩石の一軸引張試験

羽柴 公博¹*·福井 勝則¹·大久保 誠介¹

¹東京大学工学系研究科システム創成学専攻(〒113-8656 東京都文京区本郷7-3-1) *E-mail: hashiba@sys.t.u-tokyo.ac.jp

引張応力下での変形・破壊特性に及ぼす水の影響を調べるため、含水飽和した岩石試験片を用いて一軸 引張試験を行った.稲田花崗岩では、気乾状態に比べると飽和状態の方が、一軸引張強さが若干小さく、 ピークでの歪が若干大きい傾向が見られたが、応力-歪曲線の形状に大きな差異は見られなかった.本小 松安山岩では、飽和状態の方が気乾状態よりも一軸引張強さは小さかったが、ピークでの歪は両者で同程 度であった.そのため、気乾状態の応力-歪曲線が飽和状態の曲線をほぼ内包する結果となった.三城目 安山岩では、飽和状態の方が気乾状態よりもピークでの歪がかなり大きくなったため、気乾状態と飽和状 態の応力-歪曲線の形状がかなり異なったものになった.

Key Words : rock, uniaxial tension test, water-saturated condition, complete stress-strain curve

1. はじめに

岩石の引張強さは圧縮強さに比べて相当に小さいため, 地下構造物を建設する際には,周辺岩盤に引張応力が生 じないようにするのが望ましい.しかしながら,地下空 洞が大規模な場合や複雑な形状の場合,もしくは内圧が 加わるような場合には,周辺岩盤に引張応力が生じる可 能性がある.そのため,圧縮応力下だけではなく,引張 応力下での岩石の変形・破壊特性を把握することが重要 となる.また,巨視的には圧縮応力下でも,亀裂先端な どでは引張応力が生じていることがあるので,岩石の変 形・破壊機構を解明するためにも,引張応力下での挙動 を調べる意義は大きいと考える.

従来から,岩石の引張応力下での挙動を調べるために, 一軸引張試験,圧裂引張試験,曲げ試験などが行われて きた.圧裂引張試験と曲げ試験は比較的容易に行えるが, 試験片内部の応力状態が複雑なため,変形・破壊特性を 詳細に調べることには向かない.一方,一軸引張試験は 試験の実施が容易ではないため,試験結果の蓄積が少な い.岡ら¹¹は一軸引張強さを正確に測定するため,試験 片の形状,つかみ装置の機構,試験の手順などについて 検討した.Hawkes et al.³は,円柱形試験片を用いた一軸 引張試験によりピーク強さまでの応力-歪曲線を取得し, その形状について調べた.Peng³は板状の試験片,Nova and Zanineti⁴は棒状の試験片を用いて,一軸引張応力下 においてピーク強さ以前から以降までの完全応力-歪曲 線を取得した.Okubo and Fukui⁹は,一軸圧縮試験と同形 状の円柱形試験片を用いて,特別な治具を必要としない 一軸引張試験法を提案した.この試験法により,一軸引 張応力下での完全応力-歪曲線を取得し,一軸圧縮応力 下での結果と比較した.また同じ試験法を用いて,一軸 引張応力下での非弾性歪の変化⁶ や載荷速度依存性⁷ に ついても調べた.

一軸引張応力下で完全応力-歪曲線を取得するために は、これまでの試験法の多くで、試験片を載荷板(プラ テン)に接着する必要があった.しかし、水中で試験を 行う場合には容器内で試験を行う必要があり, 圧縮試験 に比べて試験片の設置が困難であった、また、多孔質な 岩石試験片を用いて、含水飽和した状態で試験を行う場 合には、通常の接着剤では載荷板への試験片の接着が困 難なため、何らかの工夫が必要であった、そのため、こ れまでの一軸引張試験のほとんどが気乾状態で行われて おり、湿潤状態での結果はきわめて少ないのが現状であ る. Hawkes et al.² や稲田ら⁸は、含水飽和した試験片で一 軸引張試験を行い、ピーク強さやピーク強さまでの応力 - 歪曲線を得たが,完全応力- 歪曲線の取得には至って いない. 大久保ら⁹は, 一軸引張応力下で湿った土丹の 完全応力-歪曲線を取得したが、含水飽和した試験片の 水中での完全応力-歪曲線は未だ得られておらず、その 試験法すら確立されていない.

わが国は地下水位が高く、多くの地下構造物が湿潤状 態に近い状況にあると考えられる.また、圧縮試験や圧 裂引張試験では、水が岩石の変形・破壊特性に影響を及 ぼすことが知られている^{10,11)}.含水飽和した試験片で一 軸引張試験を行って、水が及ぼす影響について調べるこ とは、地下構造物の設計・施工のみならず岩石の変形・ 破壊機構を解明するためにも重要と考える. そこで本研 究では、まず含水飽和した岩石試験片を用いて、水中で 一軸引張試験を行う方法について検討した. 比較的信頼 できる結果が得られたので、飽和状態と気乾状態での結 果とを比較し、一軸引張応力下での変形・破壊特性に及 ぼす水の影響について調べた.

2. 試験方法

水中で岩石の一軸引張試験を行うため、ステンレス製 プラテンとアクリル製円筒を新たに製作した. 図-1には、 試験装置の概略と試験手順を示した. 試験は、Okubo and Fukui³と同様に、プラテンに試験片を接着した状態 で行うことにした. そこで、試験片の接着および試験後 の試験片の取り外しを容易にするために、円筒が上下に 動かせるような構造とした. なお水漏れ防止のため、円 筒と下部プラテンの間にはOリングを設置した.

水中での試験では、まず、円筒を下げた状態で、上下 端面に接着剤を塗布した試験片を下部プラテンに載せて 密着させた(図-1の①).次に、上部プラテンを下げて 試験片に密着させ、試験片にわずかに圧縮荷重を加えた (②).加える荷重は岩石の種類によって異なるが、概 ね1 kN以下とした.その後、円筒を上げた状態にして試 験片が水没するまで水を注ぎ入れた(③).この状態で、 上下プラテンの位置を固定したまま1日程度接着剤が硬 化するのを待ってから、一軸引張試験を実施した(④).

試料岩石として,稲田花崗岩,三城目安山岩,本小松 安山岩を用いた. このうち, 三城目安山岩は流理面が明 瞭に観察されたので、流理面と垂直の方向にコアリング を行って試験片を作製した.いずれの岩石でも、試験片 は直径25 mm, 高さ50 mmの円柱形とし, 整形後, 温度 と湿度が管理された試験室内で1ヶ月以上乾燥させた. 気乾状態の試験では、乾燥させた試験片を用いて、図-1 の①と②を行った後、水を注がずに、そのままの状態で 接着剤が硬化してから一軸引張試験を実施した.水中で の試験は2種類の条件で行った。1つ目は、乾燥させた試 験片を用いて、図-1の①と②を行った後、約4時間経過 してから試験片を水没させ(③),さらに約20時間後に 一軸引張試験を実施した(④).以下では、この試験を 湿潤状態の試験と呼ぶことにする. 2つ目は、乾燥させ た試験片をデシケーター内で1日程度真空脱気し、その 後,水で飽和させてから,図-1①~④の手順で試験を行 った.この場合、試験片を接着して(2)から水没させ る(③)までの時間は長くても2~3分程度であった。以 下では、この試験を飽和状態の試験と呼ぶことにする. 試験では一貫してイオン交換水 (pH5~6) を用いた.

今回実施した試験を表-1にまとめた. 稲田花崗岩と三 城目安山岩については,気乾状態,湿潤状態,飽和状態

①接着剤を塗った試験片を下部プラテンに密着させる
②上部プラテンを試験片に密着させる
③円筒を上げた状態にして水を注ぎ入れる
④接着剤が硬化した後に試験を行う
図-1 水中での一軸引張試験の手順

表-1 試験で用いた接着剤

	気乾状態	湿潤状態	飽和状態	
稻田花崗岩	アラルダイト	アラルダイト	アラルダイト	
三城目安山岩	アラルダイト	アラルダイト	D2	
本小松安山岩	アラルダイト		D2	

で試験を行った.本小松安山岩については、気乾状態と 飽和状態で試験を行った.気乾状態と湿潤状態の試験, および,稲田花崗岩の飽和状態の試験では、試験片の接 着にエポキシ樹脂系接着剤のニチバン製アラルダイトを 用いた.三城目安山岩と本小松安山岩の飽和状態の試験 では、アラルダイトでは接着がうまく行えなかったので、 湿潤面でも接着が可能なエポキシ樹脂系接着剤のソテッ ク製D2を用いた.いずれの岩石、いずれの試験条件で も、載荷には容量10 kNのサーボ試験機を用い、変位は 差動変圧器式変位計、荷重はロードセルで測定した.一 軸引張試験は定歪速度10⁶/sで実施した.

3. 試験結果

いずれの岩石でも、各条件下で5本ずつ試験を行った が、見やすいように、気乾状態と飽和状態のそれぞれの 条件で、一軸引張強さが最大値と最小値を取った2本の 試験片の応力-歪曲線を図-2に示した.残りの3本の試 験片の応力-歪曲線は、概ねこの2本の曲線の間に位置 していた.なお、応力、歪とも引張を正としている.

稲田花崗岩では、載荷開始直後から飽和状態での応力 -歪曲線の傾きが気乾状態よりもやや小さかった.気乾 状態に比べると飽和状態の方が、一軸引張強さはやや小 さく、ピークでの歪はやや大きい傾向が見られた.ピー ク強さ以降では応力が急激に減少したが、応力-歪曲線

(c) 本小松安山岩

(a) 気乾状態(b) 飽和状態図-3 試験終了後の三城目安山岩の写真

の傾きが緩やかになってからは、試験条件による差はほ とんど見られなくなった.なお、ピーク強さ以前から以 降まで、湿潤状態と飽和状態では、試験結果に明瞭な差 は見られなかった.

三城目安山岩では、載荷開始直後から飽和状態での応 カー歪曲線の傾きが気乾状態よりもかなり小さかった. ピーク強さ以前の応力-歪曲線は、気乾状態では比較的 直線的であったが、飽和状態では上に凸の曲線であった. 気乾状態に比べると飽和状態では、一軸引張強さがかな り小さかったが、逆にピークでの歪はかなり大きかった. ピーク強さ以降では、気乾状態では急激に、飽和状態で は緩やかに応力が減少したが、歪が0.001を越えてから は試験条件による差が小さくなった. 湿潤状態の方が飽 和状態よりもピークでの歪がやや大きくなる傾向が見ら れたが、ピーク強度や応力-歪曲線の形状に関しては両 者の差は小さかった.図-3には、図-2(b)で示した試験片 のうち,気乾状態と飽和状態で一軸引張強さが最大値を とった試験片の試験終了後の写真を示した.破断面は滑 らかではなく、高低差5 mm程度の凹凸が見られた.気 乾状態と飽和状態で一軸引張強さや応力-歪曲線の形状 はかなり異なっていたが, 破断面の形状や破断面表面の 状態などには大きな違いは観察されなかった.

本小松安山岩では、載荷開始直後から飽和状態での応 カー歪曲線の傾きが気乾状態よりもやや小さかった. 試 験片ごとのばらつきが大きかったが、全体的に飽和状態 の方が気乾状態よりも一軸引張強さが小さかった. ピー クでの歪は両者で同程度であった. ピーク強さ以降では 応力が急激に減少したが、応力-歪曲線の傾きが緩やか になってからは、試験条件による差はほとんど見られな くなった.

より詳細に比較検討するため、各条件下での一軸引張 強さとピークでの歪について、5本の結果とその平均値 を図-4と図-5に示した.試験片ごとにばらつきが見られ たので、以下では各条件下での平均値を用いて説明する ことにする.稲田花崗岩の一軸引張強さは、飽和状態で

は気乾状態の92.2%,湿潤状態では気乾状態の94.4%と わずかに減少した.ピークでの歪は,飽和状態では気乾 状態の107.9%,湿潤状態では気乾状態の111.9%とわず かに増加した.三城目安山岩の一軸引張強さは,飽和状 態では気乾状態の43.0%,湿潤状態では気乾状態の 46.7%と顕著に減少した.ピークでの歪は,飽和状態で は気乾状態の134.3%,湿潤状態では気乾状態の168.4% と顕著に増加した.本小松安山岩では,一軸引張強さは 飽和状態では気乾状態の66.1%と顕著に減少したが,ピ ークでの歪は95.7%とわずかな減少であった.稲田花崗 岩と三城目安山岩の湿潤状態と飽和状態の試験結果の差 異は小さかったが,三城目安山岩のピークでの歪だけは, 湿潤状態の方が飽和状態よりもやや大きい傾向が見られ た.

4. 考察

含水飽和した岩石の一軸圧縮試験は従来から行われて きた. 大久保ら¹⁰ は, 5種類の岩石(稲田花崗岩, 三城 目安山岩,河津凝灰岩,田下凝灰岩,大谷凝灰岩)を用 いて、気乾状態と飽和状態で一軸圧縮試験を行った. そ の結果、稲田花崗岩では気乾状態と飽和状態の応力-歪 曲線の違いは小さいが、その他の岩石では、気乾状態で の応力-歪曲線が飽和状態での曲線を内包するとしてい る. 今回行った一軸引張試験でも、稲田花崗岩では気乾 状態と飽和状態の試験結果の差は小さく、本小松安山岩 では気乾状態での応力ー歪曲線が飽和状態での曲線を内 包するという,一軸圧縮試験結果と似た傾向が見られた. 一方、三城目安山岩では、飽和状態の方が気乾状態より もピークでの歪がかなり大きくなったため、気乾状態と 飽和状態の応力-歪曲線の形状がかなり異なったものに なった. Hawkes et al.²の一軸引張試験結果を見ると, 飽 和状態では気乾状態よりも載荷直後の応力-歪曲線の傾 きが緩やかで、ピークでの歪も大きいという、今回の三 城目安山岩と似た傾向を示す結果が報告されている.し かし、Hawkes et al.²⁾ではピーク強さ以降の応力---歪曲線 が得られていないので、気乾状態と湿潤状態とで完全応 カー歪曲線の形状がどのように変化するかについては知

られていない. 三城目安山岩の気乾状態と飽和状態の応 カー歪曲線の形状の違いは, 事前の予想以上に大きいも のであった. そこで, 今回得られた含水飽和した試験片 での試験結果の妥当性について考察してみることにする.

まず本研究では、試験条件によらず一貫して同じ試験 機、同じプラテンを用いたことを再確認しておく.また、 今回得られた稲田花崗岩と三城目安山岩の気乾状態の結 果は、同じ試験機を用いて行われたOkubo et al.⁵の結果と ほぼ同様であった.

次に、接着剤および接着部に及ぼす水の影響について 検討してみる.表-1に示したように、稲田花崗岩の気乾 状態.湿潤状態,飽和状態,三城目安山岩の気乾状態と 湿潤状態の試験では、同じ接着剤を用いた.稲田花崗岩 では、3つの試験条件での応力-歪曲線の差異は小さか ったので、接着剤および接着部に及ぼす水の影響だけで は、三城目安山岩の気乾状態と湿潤状態の応力-歪曲線 の形状の違いは説明できない.また、三城目安山岩の湿 潤状態の試験ではアラルダイト、飽和状態ではD2を用 いたが、図-4と図-5を見る限り、接着剤の違いによる影 響も小さかったと考えられる.

一軸引張試験では、試験片もしくは試験機に設置する プラテンの平行度が不十分であると、正確な試験結果が 得られない. Okubo et al.⁵は、試験片に4枚の歪ゲージを 貼って引張試験中の歪の分布を調べ、初期のアライメン トが良好であったことを確認している. プラテンを交換 した今回の試験でも、Okubo et al.⁹と同様の方法で三城目 安山岩の気乾状態の試験を行い、初期のアライメントが 良好であることを確認した. 飽和状態での初期のアライ メントについては調べていないが、試験片の端面整形は 湿潤状態のもとで行っており、その後乾燥させた試験片 のアライメントが良好であれば、飽和状態でのアライメ ントも良好であると予想される. ただ、この点は重要な ので、今後、歪ゲージを複数貼った試験片を用いて水中 での試験を行い、アライメントについて調べる予定であ る.

含水飽和した岩石の一軸引張試験については、今後も 検討の余地があるが、過去に行われた一軸圧縮試験と比 較した結果を表-2に示した.なお、三城目安山岩は今回

岩石	一軸引張強さ (MPa)			一軸圧縮強さ ¹⁰⁾ (MPa)		
	気乾状態	飽和状態	低下率(%)	気乾状態	飽和状態	低下率(%)
稻田花崗岩	6.6	6.1	7.8	190	184	3.2
三城目安山岩	4.3	1.8	57.0	88	70	20.5
本小松安山岩	5.8	3.8	33.9	-	-	-

表-2 一軸引張強さと一軸圧縮強さの比較

の試験と同様に流理面と垂直にコアリングした試験片で の結果であるが、流理面と平行にコアリングした試験片 でも、一軸圧縮強さの低下率は20%程度であった. 稲田 花崗岩と三城目安山岩では、気乾状態と飽和状態での一 軸圧縮試験結果が得られているが、気乾状態から飽和状 態への強度の低下率は、いずれの岩石でも一軸引張試験 の方が大きいことがわかる. なお、稲田花崗岩と三城目 安山岩で、一軸引張強さの低下率が一軸圧縮強さの低下 率の約25倍とほぼ同程度であったことは興味深い. 水 分によって岩石強度が低下する原因の一つとして応力腐 食の影響が考えられているが、水分の影響は複雑であり、 種々の機構が関連しているという指摘もある¹⁰. 圧縮応 力下と引張応力下での水の影響の違いについては、今後 も試験結果を蓄積し、その機構の解明も含めて検討して いく必要がある.

5. まとめ

本研究では、含水飽和した岩石試験片を用いて、水中 で一軸引張試験を行った. 稲田花崗岩では, 気乾状態に 比べると飽和状態の方が、一軸引張強さが若干小さく、 ピークでの歪が若干大きい傾向が見られたが、応力-歪 曲線の形状に大きな差異は見られなかった.本小松安山 岩では、飽和状態の方が気乾状態よりも一軸引張強さは 小さかったが、ピークでの歪は両者で同程度であった. そのため、気乾状態の応力-歪曲線が飽和状態の曲線を ほぼ内包する結果となった. 三城目安山岩では、飽和状 態の方が気乾状態よりもピークでの歪がかなり大きくな ったため、気乾状態と飽和状態の応力-歪曲線の形状が かなり異なったものになった. この点について今回の試 験の妥当性について考察したが、三城目安山岩だけが特 徴的な結果であったことも考えると結果に大きな間違い はないと考えられる.しかし、含水飽和した岩石の一軸 引張試験結果の蓄積は乏しいので、 今後データを蓄積し、 変形・破壊特性に及ぼす水の影響とその機構について検 討していく予定である.

参考文献

- 1) 岡行俊,小林良二,高多明,西松裕一(1968):岩石の引張 強さの測定法,日本鉱業会誌,84,1465-1469
- I. Hawkes, M. Mellor, S. Gariepy (1973): Deformation of rocks under uniaxial tension, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 10, 493-507
- 3) S. S. Peng (1975): A note on the fracture propagation and time-dependent behavior of rocks in uniaxial tension, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 12, 125-127
- 4) R. Nova, A. Zaninetti (1990): An investigation into the tensile behaviour of a schistose rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27, 231-242
- 5) S. Okubo, K. Fukui (1996): Complete stress-strain curves for various rock types in uniaxial tension, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 33, 549-556
- 6)福井勝則,大久保誠介,清水剛(1998):一軸引張応力下での岩石の破壊過程に関する研究,資源と素材,114,925-930
- 7) 福井勝則,大久保誠介,岩野圭太(2003):一軸引張応力下 での三城目安山岩と田下凝灰岩の載荷速度依存性,土木学会 論文集,729,59-71
- 8) 稲田善紀,木下尚樹(2002):低温の影響を受けた岩石の引 張応力下での力学特性,資源・素材2002(春季大会),195-196
- 5) 大久保誠介,福井勝則,木村有仁(2002):土丹の力学的特性と構成方程式,トンネルと地下,33,45-50
- 10) 大久保誠介,西松裕一,何昌栄,秋皙淵(1992):湿潤状態での岩石の一軸圧縮強度の載荷速度依存性,材料,41,403-409
- 秋皙淵,大久保誠介,福井勝則(1995):気乾状態と湿潤 状態での岩石の圧裂・一軸引張強度の分布特性,資源と素材, 111,231-237
- 12) S. H. Kirby (1984): Introduction and digest to the special issue on chemical effects of water on the deformation and strengths of rocks, JGR, 89, 3991-3995

UNIAXIAL TENSION TEST OF WATER-SATURATED ROCK

Kimihiro HASHIBA, Katsunori FUKUI and Seisuke OKUBO

To investigate effects of water on deformation and failure behavior of rock under tensile stress state, uniaxial tension tests were conducted with water-saturated specimens.Results of Inada granite show that the shape of stress-strain curves under water-saturated condition was similar to those under dry condition. Stress-strain curves of Honkomatsu andesite under water-saturated condition were enclosed in those under dry condition. As for Sanjome andesite, strain at peak strength under water-saturated condition was much larger than that under dry condition. Accordingly, the shape of stress-strain curves of Sanjome andesite were different between two testing conditions.