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   In previous studies, we investigated rupture instability on a two-dimensional plane of weakness that follows a 
nonlinear displacement-softening relation. We showed that if the strength weakens linearly with slip (displacement 
gap) on the plane, the critical length of the rupture region at instability is independent of any length scales entering 
into the description of the shape of the loading stress distribution. Here, By employing an energy approach, we study 
the stability of a three-dimensional plane following the linear displacement-softening constitutive law. The results, 
again independent of the shape of the loading stress distribution, are comparable with the two-dimensional ones, 
showing that the critical lengths are of the same order for both two- and three-dimensional cases. 
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1. Introduction 
 
   In order to explain the physical process of source 
nucleation, rupture propagation and wave radiation 
associated with earthquakes and rockbursts, a large 
number of laboratory experiments as well as theoretical 
and numerical models have been designed1-17), and 
seismological observations utilizing the global seismic 
network and those performed in mines seem to support 
the idea that shallow earthquakes and rockbursts are 
caused by instabilities of planes of weakness (e.g., 
geological faults, joints): Understanding the transition 
from the quasi-static source nucleation to dynamic 
rupture propagation is believed to play a crucial role in 
understanding the mechanics of seismic events1-5). 
   In earlier studies6, 7), we investigated the behavior of a 
displacement-softening plane of weakness (interface) and 
evaluated the nucleation length that is relevant to 
interface instabilities and ensuing dynamic rupture. We 
considered two-dimensional interface rupture in an 
infinite, homogeneous elastic space subjected to a locally 
peaked loading stress (Fig.1), 

σo = σp + Rt − q(x). (1) 
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Fig.1  A displacement field associated with tensile rupture 

(mode I) rupture in an infinite, homogeneous, linear elastic 

space. The loading tensile stress σo(x, t) is locally peaked in 
space and varies gradually with time, at rate R. Similarly, we 

can define the 2D problem for in- and anti-plane shear loading 

(modes II and III). 

Here, the interface coincides with the x-z plane (y = 0) of 
a Cartesian coordinate system xyz, σp is the tensile (for 
mode I) or shear (for modes II and III) strength of the 
interface, and R (> 0 if the stress increases with time t) is 
the loading rate of the increasing stress (e.g., tectonic 
loading). The function q(x) satisfies q(x) > 0 for x ≠ xp 
and q(xp) = 0. Thus t = 0 is the time when the peak value 
of loading stress, at xp, first reaches σp so that rupture 



 

 

initiates at that point. 
   In the studies, as a constitutive law inside the rupture 
region, the displacement-softening law 

σ = σp − Wδn, (2) 

is used where W and n are constants (W, n > 0). Figure 2 
shows schematically this constitutive law (2). In the 
figure, the vertical axis denotes the strength σ while the 
horizontal one corresponds to the slip (displacement gap) 
δ. Slip, defined as δ(x, t) = uy(x, 0+, t) – uy(x, 0−, t) for 
mode I, ux(x, 0+, t) – ux(x, 0−, t) for mode II, and uz(x, 0+, 
t) – uz(x, 0−, t) for mode III, can occur if the local stress 
reaches the peak strength σp. The stress inside the rupture 
region of the interface (denoted by σ(x, t) and coincides 
with σy(x, 0, t) for mode I, σxy(x, 0, t) for mode II, and 
σyz(x, 0, t) for mode III) drops according to the relation 
(2). This nonlinear power-law relation has been suggested 
in the study of laboratory characterization of softening at 
(dynamic) slips from the mm to m range in dense sand8) 
and quartz rocks9) as well as in the investigation of 
seismological scaling observations for radiated energy 
and stress drop versus slip (slips 1-500 mm)10). 
   For the linear case (n = 1)6), at t > 0, part of the 
interface opens (slips) and the stress in the rupture region 
decreases with the displacement-softening law (2), and at 
a later stage a critical nucleation length hn is reached at 
which no further quasi-static solution exists for additional 
increase of the loading. That marks the onset of a 
dynamically controlled instability, and it has been shown, 
from the quasi-static mechanical equilibrium conditions, 
that the critical length hn is independent of the shape of 
the loading stress distribution q(x), and its universal value 
is given by the solution to an eigenvalue problem by 

hn ≈ 1.158 μ*/W, (3) 

if we consider sufficiently small slip δ so that the 
displacement-softening law (2) applies at least 
approximately for the range of slips which occur prior to 
instability. Here, μ* = μ (shear modulus) for mode III and 
μ/(1 − ν) for modes I and II, with ν being Poisson’s ratio. 
   In the case of nonlinear power-law displacement-
softening interface (n ≠ 1)7), there is no longer a universal 
critical length that is independent of the curvature of the 
loading stress distribution, and qualitative features of the 
slip development on the interface are considerably 
controlled by the power n: When n is larger than a 
threshold value nth (= 2/3 for the quadratic remote loading 
q(x) = κx2/2), the behavior is qualitatively similar to that  
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Fig.2  The nonlinear, power-law displacement-softening 

constitutive relation. The stress inside the rupture region of the 

interface obeys the relation given by σ = σp − Wδn, where W 
and n are positive constants. 

for n = 1 (linear case). Slip develops gradually with 
increasing remote loading until it reaches the critical 
length above which no stable solution for increased 
loading exists; The case n = nth is transitional and the 
loading stress must in that case either always increase, or 
stay constant, or always decrease in order to expand the 
rupture region. Whichever occurs is controlled by another 
dimensionless parameter; When 0 < n < nth (such as 
expected from dynamic frictional experiments and 
seismic inversions), the analysis indicates that upon slip 
initiation the loading must be decreased in order to quasi-
statically expand the rupture region, suggesting instability 
at zero slip. When slip develops, the unstable equilibrium 
branch eventually stabilizes and the loading Rt must start 
to increase to expand the rupture region further. That may 
imply that as soon as the peak of loading reaches the 
strength σp of the interface, the rupture region nucleates 
(but actually, after a small slip, requiring a small further 
load increase, not represented in the power-law model) 
and then expands to a finite size at which arrest occurs. 
   In the following text, using a simplified energy 
approach11-13), we shall further extend the analysis into a 
three-dimensional one. We consider the stability of an 
elliptical crack that follows the displacement-softening 
law (2) and is subjected to a locally peaked remote 
loading that increases with time. The discussion is for an 
open crack (opening mode) as well as for an elliptical 
crack under unidirectional shear loading (sliding mode). 
 

2. Problem Statement  
 
   Here, in the three-dimensional context, we consider 
interface rupture in an infinite, homogeneous elastic 



 

 

space subjected to a locally peaked loading stress, σo = 
σo(x, z, t). The planar interface coincides again with the x-
z plane (y = 0). We define slip δ(x, z, t) on the interface as 
the displacement discontinuity δ(x, z, t) = uy(x, 0+, z, t) – 
uy(x, 0−, z, t) for tensile loading (opening mode), ux(x, 0+, 
z, t) – ux(x, 0−, z, t) for unidirectional shear loading in the 
x-direction (sliding mode). The relevant (tensile or shear) 
stress on the interface is denoted by σ(x, z, t) and 
coincides with σy(x, 0, z, t) for the opening mode and 
σxy(x, 0, z, t) for the sliding mode (Fig.3). It is assumed 
that the loading σo(x, z, t), the stress that would act if the 
interface was constrained against any slip, increases with 
time quasi-statically, but retains its peaked character and 
takes the form 

σo = σp + Rt − q(x, z). (4) 

Here, σp is the tensile (for opening mode) or shear (for 
sliding mode) strength of the interface, and the loading 
function q(x, z) satisfies q(x, z) > 0 for (x, z) ≠ (xp, zp) and 
q(xp, zp) = 0, and t = 0 corresponds to the time when the 
peak of loading stress first reaches σp and rupture starts at 
(xp, zp) (In this study, a loading function of the quadratic 
form q(x, z) = κ (x2 + m2z2)/2, with κ [Pa/m2] and m being 
positive constants, is assumed; in this case xp = zp = 0). At 
t > 0, some area of the interface opens (slips) and in the  
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Fig.3  An infinite, homogeneous, linear elastic body under 

tensile loading. The loading stress σo(x, z, t) is locally peaked in 
space [at (xp, zp) = (0, 0) in this figure] and increases gradually 

with time, at rate R. Due to this increasing tensile loading, a 

rupture region S develops (opening mode). Here, we assume 

that σo(x, z, t) = σp + Rt − q(x, z) = σp + Rt − κ (x2 + m2z2)/2, 
with m being a constant. Due to the increasing loading stress, an 

elliptical rupture region x2/a(t)2+z2/b(t)2 < 1 is assumed to 

expand with time and the stress inside this elliptical rupture 

region drops according to the displacement-softening law (2). 

Similarly, we can define the problem for unidirectional shear 

rupture (sliding mode). 

rupture region the stress drops following the 
displacement-softening relation (2), with n = 1 (linear 
case). We consider sufficiently small slip δ so that a 
linear displacement-softening law with constant softening 
rate W applies at least until initiation of instability. The 
edge of the quasi-static rupture region where δ > 0 are not 
specified a priori and will automatically be chosen so 
that the quasi-statically calculated σ(x, z, t) = σp is 
satisfied at the edge, assumed later as x2/a(t)2+z2/b(t)2 = 1 
(a, b > 0). Note that the aspect ratio of the ellipse l′ ≡ 
a(t)/b(t), determined by the quasi-static equilibrium 
condition at each time increase, is not equal to the aspect 
ratio of the loading function, m, and changes as the 
loading stress increases, except for special values of m 
[equation (7)]. At a late stage, critical nucleation lengths 
are reached where no more quasi-static solution exists for 
additional loading increase and dynamic instability starts. 
It can be shown that for a loading function of the 
quadratic form q(x, z) = κ (x2 + m2z2)/2, the critical 
lengths for the three-dimensional, linear displacement-
softening interface may be given again universally, 
depending only on the elastic parameters and the 
displacement-softening rate, regardless of the curvature 
of the loading κ. The analysis is performed based on a 
simplified energy approach11-13), and summarized as 
follows: 
   Consider a one-degree-of-freedom slip distribution that 
induces no stress singularity at edge 
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where a and b are the axes of the assumed elliptical 
rupture region, and D is a constant corresponding to the 
maximum slip. Then, By considering the quasi-static 
elastic equilibrium, we can express the stress on the 
interface σ(x, z, t) as14) 

σ(x, z, t) = σo(x, z, t) − ⎟⎟
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within 0 ≤ x2/a(t)2+z2/b(t)2 < 1. Here, the constants A, B 
and C represent the effect of material properties (μ and ν) 
and the aspect ratio k′ ≡ b(t)/a(t) [or l′ ≡ a(t)/b(t)]. 
   Let U[δ(x, z)] be the energy functional of the 
displacement-weakened body with slip distribution δ(x, z), 
expressed as the sum of the energy when there is no slip, 
the energy change of the system outside the rupture 



 

 

region due to introduction of slip δ, and the energy of the 
slip plane due to δ. Then, the stationary condition ∂U/∂D 
= ∂U/∂a = ∂U/∂k′ = 0 indicates13) that the critical lengths 
at instability are universal, i.e. independent of the 
curvature κ. 
   For the opening mode, Fig.4 shows the critical aspect 
ratio of the rupture ellipse at instability, k′c (l′c), for a 
given remote loading’s aspect ratio m, and Fig.5 
indicates the combination of critical lengths (ac, bc) for 
various values of the aspect ratio m of the remote loading. 
The critical length approaches the two-dimensional value 
(mode I) for extreme values of m. The results, shown in 
Figs 6 and 7 for the sliding mode, again indicate the 
universality of the critical lengths at instability, i.e., they 
do not depend on the curvature κ. For Poisson’s ratio ν = 
0.25, Fig.6 indicates the relation between the remote 
loading’s aspect ratio m and the critical aspect ratio of the 
rupture ellipse at instability, k′c (l′c), and Fig.7 shows the 
critical lengths ac and bc for varying aspect ratio m of the 
remote loading. We can see that critical lengths at 
instability approach the two-dimensional mode II or 
mode III value for extreme values of m. 
   As mentioned earlier, the aspect ratio of the rupture 
ellipse l′ ≡ 1/k′ = a(t)/b(t) generally changes with the 
increase of loading stress, but it can be analytically 
shown that the aspect ratio l′ is equal to that of the remote 
loading m, and remains the same regardless of time, t, 
when the condition 

m = l′ = 1,   (for opening mode)                               

m = l′ = mc ≈ 1/(1 − ν),   (for sliding mode)       (7) 

is satisfied. This condition gives the minimum rupture 
area at instability (πacbc) with 
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(for sliding mode)   (8) 

where K(k) [E(k)] is the complete elliptic integral of the 
first (second) kind, respectively. These critical conditions 
are indicated in Figs 5 and 7. For the opening mode, the 
condition m = 1 means axi-symmetric loading, and a 

circular crack develops on the interface. For the sliding 
mode, the condition m = mc ≈ 1/(1 – ν) with ν = 0.25 
gives the critical lengths as 2ac = 2.598μ/W and 2bc = 
1.951μ/W. 
 
 
3. Discussion 
 
   The minimum critical rupture lengths at instability 
obtained above for three-dimensional displacement-
softening interfaces [equation (8)] compare with the two-
dimensional one [equation (3): 1.158μ/[W(1 − ν)] for 
modes I and II; 1.158μ/W for mode III]. 
   From Fig.6, we find that, when m ≈ 0.832 and ν = 0.25, 
the aspect ratio of the shear rupture region at instability 
becomes 1, i.e., we have a circular critical rupture region 
in shear. In this case, the critical lengths are 

2ac = 2bc ≈ 2.286 μ/W.  (for m ≈ 0.832, ν = 0.25)    (9) 

Previous study on circular shear rupture instability15) 
indicates 

2ac ≈ (7π/12) (σo/σe)2 (μ/W) ≈ 1.833 (σo/σe)2 (μ/W),  (10) 

where the prestress is assumed to be uniform inside (σo) 
and outside (σe) the critical rupture region. Equation (10) 
has been derived by equating the available strain energy 
in the vicinity of the interface to the energy needed to 
propagate rupture at the edge16), but there is an abrupt 
change of stresses at the edge of the rupture region. 
Similar expression has been obtained from a finite 
difference calculation of triggered rupture by suddenly 
loading a circular region16) 

2ac ≈ 1.6 (σo/σe)2 (μ/W).                     (11) 

Equation (10) with σo/σe ≈ 1.247 or equation (11) when 
σo/σe ≈ 1.429 is roughly equivalent to equation (9), but 
the result obtained in (9) has stronger meaning in the 
sense that the size always coincides, no matter how 
peaked (or flat) is the loading stress, so long as we are in 
the linear range of the displacement-softening law. 
   Another numerical study on the dynamic instability of a 
crack of a priori fixed size under unidirectional uniform 
shear loading17) implies the critical size is expressed as 
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upon modifying the results found in the publication17). 
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Fig.4  The relation between the remote loading’s aspect ratio m 

and the critical aspect ratio of the rupture ellipse at instability, 

k′c (l′c), for the opening mode. 
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Fig.5  The critical lengths (ac, bc) at instability associated with 

an elliptical crack that follows the linear displacement-softening 

relation (opening mode). The lengths are obtained for varying 

aspect ratio m of the remote loading, and they approach the two-

dimensional mode I value for extreme values of m. When m = 1 

(axi-symmetric loading), the aspect ratio of the rupture region is 

always 1 (circular crack) and the minimum rupture area at 

instability is given. 

 
The sign ± appears because of the accuracy of the finite 
difference method with orthogonal grid used in the 
analysis. The edge of the rupture region (12) is  
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Fig.6  For a given remote loading’s aspect ratio m, the critical 

aspect ratio of the rupture ellipse k′c (l′c) for the sliding mode 

can be obtained using this diagram (Poisson’s ratio ν = 0.25). 
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Fig.7  The combination of critical lengths (ac, bc) at instability 

related to a linear displacement-softening elliptical rupture 

(sliding mode; ν = 0.25). The lengths are shown for various 
values of the aspect ratio m of the remote loading, and for 

extreme values of m, they approach the two-dimensional mode 

II or mode III value. When m ≈ 1/(1 – ν), the aspect ratio of the 
rupture region is always constant and the rupture area at 

instability (πacbc) becomes minimum. 

 
pseudoelliptical and approximately corresponds to the 
boundary of the critical ellipse (8) in shear, and for 
instance, for ν = 0.25, we can confirm that the elliptical 
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contour associated with the second equation of (8) is 
located inside the “band” of the contours corresponding 
to “±0.05”in (12). 
 

 

4. Conclusions 
 
   The purpose of this study was to show the critical size 
at instability that is relevant to a linear displacement-
softening interface under a locally peaked, increasing 
stress field in the three-dimensional context. By 
employing a simplified energy approach and assuming a 
loading stress of a quadratic form and an elliptical rupture 
region, we showed the following results: (1) Like the 
two-dimensional case, the critical size is independent of 
the curvature of the quadratic loading stress distribution; 
(2) For the opening (tensile) mode, if the remote loading 
is axi-symmetric, the aspect ratio of the induced rupture 
region does not change with time and is equal to 1 
(circular crack). The corresponding critical diameter is 
1.960 μ/[W(1 − ν)], with μ being shear modulus, W linear 
displacement-softening slope, and ν Poisson’s ratio; (3) 
For the sliding mode (unidirectional shear), the aspect 
ratios of the remote loading m and the rupture region 
remain constant if m ≈ 1/(1 − ν). The corresponding 
critical rupture size is written in terms of μ, ν and W. For 
example, when ν = 0.25, the critical lengths are 2.598μ/W 
and 1.951μ/W; and (4) Comparison of these results with 
the two-dimensional one (1.158μ/[W(1 − ν)] for modes I 
and II; 1.158μ/W for mode III) shows that the critical 
lengths are of the same order for all two- and three-
dimensional cases. The problem considered here is quite 
simplified, but it still retains the basic features that may 
play a crucial role in understanding the rupture nucleation 
process related to earthquakes and rockbursts. 
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