
 

 

Parameter Determination of Multi-tank Model 

with Dynamically Dimensioned Search  

 

 

XIONG Jun
1
, OHNISHI Yuzo

1
, TAKAHASHI Kenji

2
, KOYAMA Tomofumi

1
 

 
1 Department of Urban and Environmental Engineering, Kyoto University. (615-8540, Kyoto, Japan) 

2Department of Tunnel Engineering, Pacific Consultants Co. Ltd. (261-0004, Chiba, Japan) 

*E-mail: xiongjun79@gmail.com 

 

Abstract：：：：Based on tank model, multi-tank model is proposed. For the calibration process with many 

parameters like multi-tank model, it is typically difficult to obtain optimal parameters using the existing 

methods. A new random optimization approach called modified dynamically dimensioned (DDS) search 

is introduced for parameters calibration of new model. It is based on heuristic global search and its 

adjustment is achieved by dynamically and randomly reducing the number of searching dimensions. 

Multi-tank model with 25 parameters is applied to an actual case, According to the results, good 

agreement between observed values and calculation results is obtained. It is clarified that this model is a 

helpful tool in prediction of water table and stability factor of the slope. 
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1. Introduction 

 

The tank model proposed by Sugawara
[1,2]
 and 

others is structurally simple and useful, since it can 

represent a non-linear stream flow behavior. Therefore it 

is widely used for long-term runoff analysis. In real cases 

there are many kinds of tank distributions as required. 

Because of many parameters, it is difficult to properly 

identify those using observed data. In previous literatures 

some researches tried to find solutions for four-tank 

model (16 parameters) with many methods: Kobayashi 

and Maruyama
[3]
  applied Powell’s conjugate direction 

method to the problem. Watanabe
[4]
 suggested using 

Newton’s method. Yasunaga
[5]
 and Hino

[6]
 tried 

sequential estimation using Kalman filter. Tanakamaru
[7]
 , 

Suzuki
[8]
 tried to use genetic algorithm (GA) as an 

efficient search procedure. In this paper, multi- tank 

model is more complicate, and three series of tanks are 

introduced, and 25 (or more) parameters are needed to 

estimate from measurements by use of retrieve functions. 

For three series of tank distribution, using GA is very 

time-consuming and also the solutions are not so good. 

So in order to facilitate calibration process, the 

development of a new method is needed. 

Basically, during the studies of estimating 

parameters, the calibration function of multi-tank model 

is replaced with a non-linear optimization function, for 

example, the most popular way is to minimize the errors 

between calculations and measurements. In this article 

some water table measurements are used as criterion 

function. Using genetic algorithm to find the estimation 

of tank model parameter, if it is regarded as an inverse 

problem, it is an ill-posed problem without uniqueness of 

the solution especially when parameters are over 20. And 

also it presents a significant computational burden. This 

is because too many dimensions will lead to distribution 



order increase with geometric series. In fact though one 

considers getting results in the limited number of model 

evaluations, the idea of achieving global optimality 

becomes unreasonable in most automatic calibration 

process. So for high dimension optimization problems, a 

better multipoint random optimization method is 

necessary, and here a new approach called modified 

dynamically dimensioned search is provided as one of 

such good algorithm focused on identifying good 

calibration results when calculation time is limited.  

 

 

2. Analytical multi-tank model and its 

parameter determination. 

 

The tank model is composed of one or several series 

of tanks with some outlets on the side and bottom in each 

tank. Outflow through the side outlets represents 

components of the total discharge due to the immediate 

or delayed response to the rainfall. Flow through the 

bottom holes means the portion of infiltrating flow and 

does not contribute to the surface flow directly. 

In this study, in order to monitor the water table of 

the slope and estimate the slope stability factor during 

rainfall, three series of multi-tanks are introduced as 

shown in Fig-1; its 25 parameters generally need to be 

estimated using the new optimal method.  

 

(1) Schematic figure of tank model 

The studied tank model is a three series of in-line 

six-tank model as illustrated in Fig-1, which is used as 

surface flow and water table analysis model: R(t) is rain 

intensity (mm/day), a(i) is the coefficients of runoff from 

the side hole of the tank; b(i) means coefficients of 

seepage from the bottom hole; Z(i) represents the height 

of the runoff on the side of tanks(mm); and Q(i) is 

seepage runoff volume from the side of the tank. WL0(i) 

is the initial water level in corresponding tank. Then the 

lateral flow discharge (Qi(t)) and the vertical seepage 

volume (Ii(t)) at one specific time can be evaluated by 

equations (1), (2), (3): 
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Here: WLi(t) and hi are the water tables of the 

corresponding tank; it is noted that the water levels of the 

three lower tanks (h2, h4 and h6) are related to 

groundwater table. GWLi(t) at a specific time t is 

calculated by the following equations: 

( ) (0) ( )bot

i i
GWL t GWL h t v= +              (4)            

Where GWL(0) is the reference groundwater level; v is 

effective porosity of soil; ( )bot

i
h t is calculated water levels 

of three lower tanks (i=2,4 ,6). 

 

(2) Definition of optimization function 

In order to find appropriate solutions, the evaluation 

functions can be used as expressed by the following 

equation (5).  
2
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Here: Qo(i) is observed measurements of water table of 

three lower tanks; Qc(i) is calculated results; M is the 

number of data measurements.  

 

(3) Definition of modified dynamically dimensioned 

search 

The dynamically dimensioned search algorithm
[9]
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Fig-1 Schematic figure of tank model  
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(DDS) is a novel and simple stochastic single-solution 

method, and it is based on heuristic global search 

algorithm that was developed for the purpose of finding 

good global solutions within the specified maximum 

function evaluation limit. In short, the algorithm searches 

globally at the start of the search and becomes more and 

more local as the number of iterations approaches the 

maximum allowable number of function evaluations. The 

adjustment from global to local search is achieved by 

dynamically and randomly reducing the number of 

dimensions in the neighborhood. The decision variables 

in automatic calibration are the model parameters, and 

the dimension being varied is the number of model 

parameter, which are changed to generate a new search 

neighborhood. Candidate solutions are created by 

perturbing the current solution values randomly selected 

dimensions only. Its perturbations magnitudes are 

sampled from a normal distribution N(0,1).  

The DDS algorithm is unique relative to current 

other random optimization approaches because of the 

way that neighborhood is dynamically adjusted by 

changing the dimension of the search. But using GA, the 

final solutions will be different for every calculation 

process. The only algorithm parameter to set in DDS is 

the scalar neighborhood size perturbation parameter (r) 

that defines the random perturbation size as a fraction of 

the decision variable range. An initial value of the r 

parameter is set as 0.2, and with the calculation process 

going on r will reduce step by step, the minimal value of 

r is 0.05, which is different from Tolson
[9]
. This initial 

sampling region size is designed to allow the algorithm 

to escape regions around poor local minima. In the final 

stage because the current solution is close to final results, 

in order to avoid big perturbation, the value of r must 

decrease. And also in order to accelerate the rate of 

convergence, its update algorithm is also modified. The 

complete calculation process of modified DDS algorithm 

is provided as the follows: 

STEP1. Define modified DDS inputs: 

� Neighborhood perturbation size parameter: r(the default 

initial value is 0.2); 

� Vectors of lower, xmin, and upper, xmax, and initial 

solution, x0 = [x1,x2,…,xD]. 

STEP2. Set counter to 1, i=1, and evaluate objective function F 

at initial solution, F(x0): 

� Fbest = F(x
0), and xbest = x0 

STEP3. Randomly select J of the D decision variables for 

inclusion in neighborhood, {N}. 

STEP4. For j=1,…,J decision variables in {N}, perturb 

best

j
x using a standard normal random variable: N(0,1), 

reflecting at decision variable bounds if necessary: 

STEP5. Evaluate F(x
new
) and update current best 

solution if necessary: 

� If  F(xnew)≦Fbest, update new best solution: 

       Fbest＝F(xnew) and xbest＝xnew 

� If  F(xnew)>Fbest   and 

new bestexp( (F -F  ) f(j))− >random(Pn) 

       Fbest＝F(xnew) and xbest＝xnew 

STEP6. Update iteration count, i=i+1, and check 

stopping criterion: 

� If i= Maxiter, STOP, print output (e.g: Fbest and xbest ) 

� Else go to STEP3 

The only parameter ‘r’ is defined as the following 

lines: Pn decreases with the increase of the number of 

function evaluations (Maxiter is maximum number of 

function evaluation; ‘i’ is the current calculation step): 

Pn=1.0-dlog(dfloat(i))/dlog(dfloat(Maxiter)        

if (0.4<Pn.)  r_val=0.20 

if(0.3<Pn.and.Pn<0.4)   r_val=0.18   

if (0.2<Pn.and.Pn<0.3)   r_val=0.15   

if (0.1<Pn.and.Pn<0.2)   r_val=0.08 

if (Pn<0.1)  Pn=0.1;    r_val=0.05 

 

 

3. Case studies on the actual slope using 

multi-tank model  

 

The multi- tank model is applied to the slope along 

Japanese national road No.12 to simulate fluctuations of 

groundwater table induced by rainfall. 

 

(1) Outline of the slope 

From the boring survey results, it is revealed that in 

the slope, weathered rock is about 3 to 10 meter thick. 

With the history of collapses, it was regarded that it is 

urgent to determine its water table fluctuations and 

evaluate its stability. As illustrated in Fig-2, it is the 

configuration of multi-tank model in the slope: Top tank 

(tank2) is assumed on the top hill(x=325m); middle 

tank(tank4) is at the center (x=165m) and bottom tank 



 

(tank6) lies on the lowest part of the slope 

(x=7m), and the porosities near the three parts 

are 0.09, 0.18 and 0.15 respectively. As 

aforementioned, in order to evaluate tank 

parameters, historical data of rainfall and ground 

water table are required. In this case, there are 

four observation borings along this cut-slope: 

boring No.B3-D-2(x=310 m), B2-707(x=225m), 

B2-706(x=165m), and B3-D-5(x=98m) are 

drilled to monitor the ground water table at the 

four locations. Rainfall intensities and ground 

water tables of 185 days from 1994-5-27 have 

been recorded, and the initial measurements of 

100 days are used to parameters optimization; 

the rest measurements of 85 days are used to 

check model’s validity. 

 

 (2) Analytical conditions 

The parameters of multi- tank model can be 

identified by the reproduction of observed 

hydrographs assuming that basic watershed 

characteristics remain unchanged during the 

observation of events. In the runoff analysis, 

because the studied slope area is fairly small in 

size, the travel time is considered to be relatively 

short. The data used for the analysis are the 185 

daily measurements of precipitation (shown as 

Fig-3 between 1994-5-27 and 1994-11-27) and 

water tables averaged over catchment of the 

slope. By using multi-tank model, water tables 

can be obtained; and using optimization method 

of modified dynamically dimensioned search 

algorithm, parameters are retrieved. Here there 

 

are totally 25 parameters; their lower and upper 

bounds of the search for parameters are listed in 

Table 1. The bounds of search are set based on 

the result of an application of the three-series 

tank model. The maximum number of function 

evaluation (Maxiter) is 4000, and it is considered 

large enough for practical purposes. 
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Fig-3. Daily rainfall intensities 

 

Table1. Parameter bounds 

 

0.0<a(1)<0.4 5.0<Z(1)<200 0.0<b(1)<0.4 

0.0<a(2)<0.4, 5.0<Z(2)<300 0.0<b(2)<0.4 

0.0<a(3)<0.4 5.0<Z(3)<200 0.0<b(3)<0.4  

0.0<a(4)<0.4 5.0<Z(4)<300 1< WL0 (1)<80 

0.0<a(5)<0.4 5.0<Z(5)<200 10< WL0 (2)<300 

0.0<a(6)<0.4 5.0<Z(6)<200 1< WL0 (3)<80 

0.0<a(7)<0.4 5.0<Z(7)<300 10< WL0 (4)<300 

0.0<a(8)<0.4 5.0<Z(8)<200 1 < WL0 (5)<80 

 Unit/ mm 10< WL0 (6)<450 

 

(3) Analytical results 

The analysis results of by dynamically 

dimensioned search are shown in Table 2. The 

calculation error JXS is represented by 0.1412. 

Fig.2 Configuration of multi-tank model in the slope 
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Objective function values plotted against the 

number of function evaluation is shown in Fig-4 

From the figure, it is clear that at the beginning 

objective function values are over 15000, but 

with the calculation process going on, they go 

down quickly, at the same time, the perturbation 

is very big at the initial stage, and then become 

smaller and smaller gradually, finally the current 

solution is close to final results; the objective 

function values decrease oscillatorily with some 

perturbations, which shows modified DDS can 

escape from the poor local minima. 

Differences of water table between observed 

and estimated errors are shown in Fig-5, from 

which it can be concluded that good agreement 

between the observed values (Boring B2-706) 

and the calculation results (Tank4) is obtained, 

especially during the prediction phase the 

agreements are very good too. Fig-6 shows 

measurements of several borings and calibration 

results of at Tank2; compared with peak value of 

Tank2 and Tank4, the lagged effect of 

groundwater table peak of No. B2-707 and 

B3-D-5 is also reproduced. By use of spline 

interpolation method, the virtual measured water 

tables can be estimated quickly. As shown in 

Fig-6, its interpolation curve of Tank2 is similar 

to the calculated results there. So it can be 

concluded that during the rainfall, multi-tank 

model proposed in this paper can effectively and 

quickly simulate the transport behavior of 

ground water table in the slope. 
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Fig-4. Objective function value plotted against the 

number of function evaluations   

Table2 Optimization solutions 

 

a(1)= 0.341 Z(1)= 63.429 b(1)= 0.399 

a(2)= 0.041 Z(2)= 101.88 b(2)= 0.371 

a(3)= 0.353 Z(3)= 50.010 b(3)= 0.396 

a(4)= 0.387 Z(4)= 297.56 WL0(1)= 1.598 

a(5)= 0.046 Z(5)= 185.14 WL0(2)= 118.009 

a(6)= 0.365 Z(6)= 75.246 WL0(3)= 14.436 

a(7)= 0.035 Z(7)= 297.69 WL0(4)= 245.226 

a(8)= 0.035 Z(8)= 53.541 WL0(5)= 7.3401 

 Unit/mm WL0(6)= 134.260 
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Fig-5. Measurements and calibration results 

 

255

260

265

270

275

280

0 50 100 150 200

Elapsed time(day)

W
a
t
e
r
 
t
a
b
l
e
(
m
)

B3-D-2

Tank2

B2-707

Interpolation

 

Fig-6. Measurements and calibration results 

 

After getting the water tables of the several 

locations during the rainfall, the instantaneous 

groundwater lines can be estimated quickly by 

spline interpolation method. Then the slope 

stability factor is calculated with the division 

methods commonly. In the division method, 

there are many methods such as Fellenius, 

Bishop, Janbu and Spencer. Fig-7 is the results of 

stability analysis of this slope using Bishop 

method during the analysis period: it is clear that 

when rain is big, its stability factor decreases 

sharply, which also demonstrates that rainfall has 



great influence on slope stability. 
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Fig-7. Slope stability factor changes during rainfall 

 

 

4. Conclusions  

 

The paper focused on the behavior of rainfall 

infiltration process and aimed to develop a 

simple and quick analytical tool to evaluate 

underground water table and slope stability 

factor. The insights gained through this study are 

summarized as the following: 

According to water balance (tracking flows of 

water into and out of the particular hydrologic system 

of interest), a multi-connected tank model that 

can reproduce the rainwater movement behavior 

during rainfall infiltration process was developed. 

A new stochastic single-solution method called 

modified dynamically dimensioned search was 

adopted to identify optimal solutions. The new 

method could find relatively good solutions in a 

shorter time. Multi-tank model was applied to 

the actual slope. Its consistency with field data 

was confirmed, and its practicability was proved.  

Although multi-tank model has an advantage 

of predicting water table fluctuations, it can not 

give information of infiltration process in the 

unsaturated zone. The authors are planning to 

work on the development of unsaturated tank 

model, so the stability for shallow landslide can 

be assessed during by rainfall. Combined with a 

new accurate rain gauge, the methodology will 

be evolved further into an assessment system for 

correctly predicting the hazards of rainfall that 

may lead to slope failure. 
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