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   We investigate the nucleation of instability on a displacement-softening plane of weakness (interface) subjected to a 
locally peaked, gradually increasing loading stress. Rupture initiates when the peak of the loading stress first reaches 
the strength level of the interface to start displacement softening. Then the size of the rupture region grows under 
increased loading stress until finally a critical nucleation length is reached, which marks the onset of a dynamically 
controlled instability (e.g., earthquakes, rockbursts). We prove that the nucleation length is independent of the shape 
of the loading stress distribution. Its universal value is proportional to an elastic modulus and inversely proportional 
to the linear displacement-softening rate, and is given by the solution to an eigenvalue problem. 
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1. Introduction 
 
   In order to understand the physical process of loss of stability of 
cracked or partially contacting solid structures, many mechanical 
models have been proposed and studied. For example, analytically, 
using the potential energy principle in the framework of quasi-static 
elasticity and a linear displacement-softening law, a boundary 
eigenvalue problem is derived for a cohesive crack model1). It was 
shown that under a critical condition related to the smallest eigenvalue, 
the corresponding eigenfunction represents the non-unique part of the 
displacement solution and the critical load can be determined via that 
eigenfunction. Also, by variational analysis, the condition of stability 
loss of an elastic structure with a growing cohesive crack is obtained 
where the stress is specified as a decreasing function of the crack 
opening displacement (displacement-softening)2, 3). That condition 
was transformed into an eigenvalue problem for a homogeneous 
Fredholm integral equation, with the structure size as the eigenvalue, 
and solved for the maximum load as well as the maximum deflection 
that is carried by the structure, explicitly in terms of the eigenfunction 
associated with the integral equation. 
   Other examples are related to the study of earthquake source 
process: A spectral method was used to investigate the initiation of 
dynamic anti-plane slip instabilities of a slip-weakening (analogous to 
displacement-softening for tensile rupture) geological plane of 

weakness (e.g., fault, joint) in a homogeneous linear elastic medium 
that is pre-stressed uniformly up to the frictional threshold4-6). Using an 
eingenvalue analysis, an analytical expression of the slip was given 
and that slip was divided into two parts: the solution associated with 
positive eigenvalues (“dominant part”) and negative eigenvalues 
(“wave part”). It was shown that the dominant part, characterized by 
an exponential growth with time, controls the development of the 
instability and the wave part becomes rapidly negligible when the 
instability develops. The effect of displacement-softening rate on the 
duration of the quasi-static phase and the critical crack length was 
evaluated4, 5). The analysis was further extended to instabilities of a 
finite crack of (a priori) fixed length6). However, no explanation 
regarding the physical meaning of the (a priori) fixed crack length 
and uniform loading has been given in these analyses. Since the 
rigorous numerical treatments of the complete earthquake cycle7, 8) 
show clearly that a region of initially quasi-static crack grows in size 
in a quasi-static manner before dynamic breakout of the rupture, 
models that have quasi-statically extending cracks are needed. 
   In the following, based on the quasi-static elastic equilibrium 
condition and the linear displacement-softening law, we show that the 
nucleation length relevant to the instability of a plane of weakness 
(interface) depends only on elastic modulus of the medium and the 
displacement-softening rate9). 
 



 

 

2. Problem Statement  
 
   We investigate the behavior of a linear displacement-softening 
interface and evaluate the nucleation length that is relevant to interface 
instabilities and ensuing dynamic rupture. We consider two-
dimensional interface rupture in an infinite, homogeneous elastic 
space subjected to a locally peaked loading stress (Fig.1) 

σo(x, t) = σp + Rt − q(x). (1) 

Here, the interface coincides with the x-z plane (y = 0) of a Cartesian 
coordinate system xyz, σp is the tensile (for mode I) or shear (for 
modes II and III) strength of the interface, and R (> 0 if the stress 
increases with time t) is the loading rate of the increasing stress (e.g., 
tectonic loading). The function q(x) satisfies q(x) > 0 for x ≠ xp and 
q(xp) = 0. Thus t = 0 is the time when the peak value of loading stress, 
at position xp, first reaches σp so that slip initiates at that point. 
   In the study, as a constitutive law inside the rupture region, the 
displacement-softening law 

σ(x, t) = σp – Wδ(x, t), (2) 

is used where W (W > 0) is a constant. Figure 2 shows schematically 
this constitutive law (2). In the figure, the ordinate denotes the strength 
σ and the abscissa corresponds to the slip (displacement gap) δ. Slip, 
defined as δ(x, t) = uy(x, 0+, t) – uy(x, 0−, t) for mode I, ux(x, 0+, t) –    
ux(x, 0−, t) for mode II, and uz(x, 0+, t) – uz(x, 0−, t) for mode III, can 
occur if the local stress reaches the peak strength σp. The stress inside 
the rupture region of the interface (denoted by σ(x, t) and coincides 
with σy(x, 0, t) for mode I, σxy(x, 0, t) for mode II, and σyz(x, 0, t) for 
mode III) drops according to the relation (2). 
   Figure 3 shows schematically the development of the rupture region 
by the increasing loading stress. Figure 3(a) pertains to the situation at 
time t = 0, where the loading stress σo(x, 0) reaches the strength of the 
interface, σp, to start displacement softening. Prior to this stage, no slip 
has occurred. The function q(x) can be identified as the difference 
between the straight horizontal line σ = σp and the curve σ = σo(x, 0). 
At t > 0 [Fig.3(b)], part of the interface slips and the stress inside the 
rupture region drops according to the displacement-softening law (2). 
Note that the extremities of the quasi-static rupture region where δ > 0 
(i.e., the support of the slip distribution) are not specified a priori and 
will automatically be chosen so that the quasi-statically calculated   
σ(x, t) = σp is satisfied at those extremities, x = a±(t). At least that will 
hold so long as a quasi-static solution actually exists. We would like to 
know when it just fails to exist; this situation gives the nucleation 
length of earthquake rupture. Figure 3(c) shows such a situation. At a 
late stage, a critical nucleation length hn is reached at which no further 
quasi-static solution exists for additional increase of the loading. That 
marks the onset of a dynamically controlled instability. In the  
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Fig.1  A displacement field associated with tensile (mode I) rupture in an 

infinite, homogeneous, linear elastic space. The loading shear stress σo(x, t) is 

locally peaked in space and increases gradually with time, at rate R. Similarly, 

we can define the problem for in-plane (mode II), or for anti-plane shear (mode 

III) rupture. 
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Fig.2  The (initially) linear displacement-softening constitutive law. The stress 

inside the rupture region of the interface obeys the linear relation σ = σp – Wδ, 

at least when the strength drop is less than Δσ. The displacement-softening rate 

W is a constant (W > 0). 

 
 
following, we will prove that for the linear displacement-softening 
law, the nucleation length is independent of the shape of the loading 
stress distribution, that is, it is independent of the mathematical form 
of q(x). Its universal value is proportional to an elastic modulus and 
inversely proportional to the displacement-softening rate, and is given 
by the solution to an eigenvalue problem. 
 
 
3. Displacement-Softening Nucleation Length 
 
   By considering the quasi-static elastic equilibrium, we can express 
the stress on the interface σ(x, t) only in terms of the slip δ(x, t) as10) 
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Fig.3  Development of the rupture region induced by the increasing loading 

stress. (a) At time t = 0, the peak of the stress distribution reaches the peak 

strength of the interface, σ p. Prior to this stage, no slip has occurred; (b) At t > 0, 

part of the interface slips and the stress inside the rupture region drops according 

to the displacement-softening law; and (c) At a later stage t = tc, when the length 

of the rupture region reaches a critical value, hn, the interface system becomes 

unstable and the rupture region will expand even without any increase of the 

loading stress. We will show that hn is independent of R and q(x). 
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Here, μ∗ = μ (shear modulus) for mode III and μ/(1 − ν) for modes I 
and II, with ν being Poisson’s ratio. Using this elastic equilibrium 
condition (3) and the displacement-softening law (2), together with 

equation (1) and differentiation with respect to time, we obtain 
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for a–(t) < x < a+(t).  (4) 

Here, V(x, t) is slip rate V(x, t) ≡ ∂δ(x, t)/∂t. By introducing a(t) ≡   
[a+(t) – a–(t)]/2, b(t) ≡ [a+(t) + a–(t)]/2, X ≡ [x – b(t)]/a(t) and v(X, t) ≡ 

V(x, t)/[ )(2 tVrms ], where Vrms(t) is the root-mean-square slip rate 
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we can normalize equation (4). Thus, suppressing explicit reference to 
the time-dependence of a(t), Vrms(t) and v(X, t), 
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for –1 < X < +1,  (6) 

where ′ denotes the first derivative of a function. The rupture region 
keeps growing in time but since Vrms/(aR/μ∗) diverges as the 
nucleation condition is approached, at the critical length, aR/(μ∗Vrms) 
becomes zero. That length is the nucleation length that we seek. At 
that length the above integral equation for v(X) becomes 
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svXvaW    for –1 < X < +1.             (7) 

The critical length is thus given as the length such that the eigen 
equation (7) has a nontrivial solution for v(X). Equation (7) implies 
that a solution is given when a(t)W/μ∗ reaches the smallest eigenvalue 
acW/μ∗ = λ0 ≈ 0.579 and v(X, tc) is equal to the associated 
eigenfunction v0(X). Thus, the critical length hn is given by 

hn = 2ac ≈ 1.158 μ∗/W.                                   (8) 

Note that, the critical length depends only on the (generalized) shear 
modulus μ∗ and the displacement-softening rate W and is 
independent of the rate and the shape of the loading, that is, of R and 
q(x). 
   In our formula for the critical nucleation length (8), the 
displacement-softening rate W plays a crucial part. This parameter in 
the linear softening law (2) is given by W = Δσ/Dc if one assumes 
linear softening for slips δ < Dc, and no further softening for δ > Dc. 
   Examples: Consider the displacement-softening process in the post-
failure stage of laboratory tests of initially intact samples. Typical 
laboratory testing of shear fracture of initially intact Fichtelbirge 
granite specimens at different confining pressures (7.5 to 300MPa) in 
a stiff, servo-controlled triaxial apparatus11, 12) suggests that μ = 30GPa 
and ν = 0.25 (i.e., μ∗ = 40GPa), and the displacement-softening 



 

 

process is approximately linear: In the relatively low range of the 
interface-normal compressive stress, 60MPa < σn < 120MPa, the 
displacement-softening distance is approximately Dc = 440μm and 
the strength drop Δσ = 20MPa. In this case, the displacement-
softening rate W = Δσ/Dc ≈ 50GPa/m and the nucleation length is hn 
≈ 0.9m. For σn = 140MPa, the displacement-softening distance is 
about Dc = 460μm and the strength drop is found to be Δσ = 30MPa. 
We have W ≈ 70GPa/m and hn ≈ 0.7m in this instance. Under 
relatively high interface-normal compression 250MPa < σn < 
600MPa, Dc is some 800μm and the strength drop scales with σn, Δσ 
= 0.04σn + 50MPa12). Therefore, in this range of σn, Δσ ≈ 60 to 
75MPa and the displacement-softening rate is W ≈ 75 to 90GPa/m. 
Hence we have hn ≈ 0.5 to 0.6m. 
 

 

4. Conclusions 
 
   The purpose of this contribution was to show the critical length that 
is relevant to (linear) displacement-softening interface instabilities. By 
considering the quasi-static elastic equilibrium condition, we have 
indicated that the critical length can be expressed in terms of the 
smallest eigenvalue (of the reduced problem), the elastic modulus and 
the displacement-softening rate only. It should be noted that the 
fundamental nature of rupture instabilities remains the same even 
when the type (mode I, II, or III) and the shape of the loading change. 
Although the problem investigated in this study is quite simplified, it 
still retains the essential characteristics that are believed to play an 
important part during the rockburst / earthquake nucleation process. 
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