坑井内震源を必要としない坑井間反射法

湊翔平^{1*}·尾西恭亮¹·松岡俊文¹·土山滋郎²·東宏幸³

¹京都大学大学院 工学研究科 社会基盤工学専攻(〒615-8540京都府京都市西京区京都大学桂) ²リサイクル燃料貯蔵株式会社(〒035-0076 青森県むつ市旭町1-15) ³応用地質株式会社(〒102-0073 東京都千代田区九段北 4-2-6) *E-mail: s_minato@earth.kumst.kyoto-u.ac.jp

複数の受振点による観測記録を相互相関することで、これらの受振点間のグリーン関数を合成すること ができる.この手法をバーチャルソース法、または地震波干渉法と呼ぶ.これを用いると、地表に震源を 設置し、坑井内の受振器で観測した波動場から、坑井間記録を合成することができる.本研究はフィール ドデータを用いて坑井間記録を合成し、重合前制限付キルヒホッフマイグレーションを適用して坑井間の 不連続境界をイメージングした.震源が地表に限定されていたため、合成された坑井間記録は実際に坑井 内に震源を設置した記録と完全に一致しなかった.しかし従来の坑井間反射法と良く一致するイメージン グ結果が得られた.

Key Words :borehole, interferometry, virtual source, migration

1. はじめに

坑井間反射法は陸上地震探査より高分解能の地下構造 を得ることができる重要な手法である.この手法では複 数の坑井間で1つに発振源,残りに受振点を設置して坑 井間の物性分布を測定する. 震源と受振点を探査対象の 近くに設置できるため、得られるデータは一般に高分解 能である.しかし、坑井間反射法は、坑井を破壊しない ように低エネルギーの震源を用いるため、探査範囲に限 界がある.バーチャルソース法^{1),2)},あるいは地震波干 渉法3,4は、複数の受振点による観測記録を相互相関す ることで、これらの受振点間のグリーン関数を合成する 手法である. この手法は近年理論的発展を遂げ、反射法 地震探査の分野に広く応用されつつある。 地震波干渉法 を坑井間反射法に応用するにあたり、受振器は坑井内に 設置し、震源は地表に設置する. そのため地表震源にダ イナマイトのような高エネルギーの震源を用いることで、 探査範囲を拡大できる可能性がある. 本研究はフィール ドデータを用いて坑井間地震記録を合成し、地下構造の イメージングを行う.

2. 2つの坑井における坑井間記録の合成

2つの異なる受振点で得られた観測記録を相互相関す ると、一方の受振点を震源として、もう一方の受振点で 受振したとする記録を合成することができる. 地震波干 渉法の基礎式は次式であらわされる.

$$2\Re\{\hat{\mathbf{G}}(\mathbf{x}_{A},\mathbf{x}_{B},\omega)\}\approx\frac{2}{\rho c}\oint_{\partial D}\hat{\mathbf{G}}^{*}(\mathbf{x}_{A},\mathbf{x},\omega)\hat{\mathbf{G}}(\mathbf{x}_{B},\mathbf{x},\omega)\mathbf{d}^{2}\mathbf{x} \quad (1)$$

この式は相反定理と時間反転理論から導かれる. 周波数 領域における乗算は,時間領域にけるコンボリューショ ンを示す. 震源 \mathbf{x}_{B} における受振点 \mathbf{x}_{A} のグリーン関数 $\hat{\mathbf{G}}(\mathbf{x}_{A},\mathbf{x}_{B},\boldsymbol{\omega})$ は, \mathbf{x}_{A} と \mathbf{x}_{B} における地震記録の相互相関 を,受振器をとりまくような閉曲線 $\partial \mathbf{D}$ 上の全ての震源 に対する積分によって合成できる. 地震波干渉法を坑井 間反射法へ応用するにあたり,震源を地表に設置し,受 振器は坑井内に設置する. 地表の複数の地点に震源を配 置し,坑井内の全ての受振器で波動場を観測する(図-1). 次の手順に従って,坑井間記録を合成する.

- 2つの異なる受振器を選択する.1つは坑井1内の 受振器(R_A),もう一方は坑井2内の受振器(R_B)とす る.
- 2. R_A と R_B の, 震源を共通とする記録を相互相関する.

3. 全ての震源に対して受振記録を相互相関処理し、足 し合わせることで、一方の受振器を震源としても う一方の受振器で受振したとする記録を合成する.

この処理は次の式であらわされる. R_AからR_Bへ伝播する波動場をD_{AB}とする.

$$D_{\rm AB}(t) = \sum_{k=1}^{N} S_{k\rm A}(-t)^* S_{k\rm B}(t)$$
 (2)

ここで は R_B におけるk番目の地表震源による観測記録で ある.また は R_A における観測記録を時間反転したもの である.記号 "*" はコンボリューション演算を示し, 設置された震源間隔で震源数Nまで重合される.

相互相関処理する受振器の組み合わせを変えることで、 全ての受振器は仮想的な震源となり得る.ここで注意す べき点は、震源が地表に局在しており、受振器を取り巻 くように設置されていないことである.そのため、合成 記録はこの影響を受ける.これについては後述する.

3. イメージング手法

本研究ではイメージング手法として、重合前制限付キ ルヒホッフ深度マイグレーションを採用する. 震源から 任意の点を通り受振点へ到達する波の走時を、アイコナ ル方程式により計算する. 図-2 に示すように同じ走時 をもつ点の集合は楕円に似た曲線となる. 曲線の接線と 水平方向との角度 θ が、 $\theta = 0^\circ$ のとき、この点は水平 構造に対する鏡面反射点である.

マイグレーションのスマイルを抑制するため、マッピ ングによる開口幅を制限する.受振記録の反射波を、鏡 面反射を含む $|\theta| \leq 1^{\circ}$ の部分にマイグレーションする. マイグレーションする候補点は受振点より上方と下方に 分布する.そのため受振記録を上方進行波と下方進行波 に分離し、マイグレーション位置を選択する. つまり、 図-2における記録中の走時T_{SR}の反射波の振幅をマッピング することで、反射境界をイメージングする.この処理を全て の震源と受振点の組み合わせで行う.

4. フィールド解析

(1) 震源および受振点の配置

図-3 に本研究で解析を行った地点の震源と受振器の 配置を示す.坑井1,坑井2には、深度28mから17 0mまで2m間隔でそれぞれ72個ずつ受振器が設置さ れている.地表33地点に震源を設置し、坑井内の全受 振点で受振する.震源は発破震源、受振器はハイドロフ

図-1: 地震波干渉法を坑井間に応用する際の震源と受振 器の配置

図-2:マイグレーションの概念図

図づ · 附付を行ったフィールトにおける, 晨線と受振奋の 配置

オンを用いた.受振記録中には強振幅のチューブウェー ブに似たノイズが卓越していた.相互相関処理により, 坑井2を震源坑とし,坑井1で受振したとする坑井間記 録を合成する.また,実際に坑井内に震源を設置して得 た通常の坑井間記録と合成記録を比較する.

(2) 坑井間記録の合成

坑井間記録の合成手順を図-4に示す.まず、チューブ ウェーブを手動でミュートした. 合成された坑井間記録 と通常の坑井間記録を図-5に示す. それぞれ震源と受振 点の配置は同じである.図には坑井2で観測された共通 震源記録が、震源深度が28m、100m、170mの 場合で示されている.相互相関処理の前にAGC処理を 適用したため、合成記録の反射波は良好に確認できる. またS波が確認できないのは、P波処理のノイズと考え て相関前に除去したためである. 合成記録には、通常の 坑井間記録の初動と反射波に対応する波が確認できる. しかし、初動以前に偽の波が現れ、震源が深くなるにつ れて震源から上方へ向かう直接波は確認できなくなる. これらは相関前の受振記録の震源が地表に限定している ためである. 震源が地表に局在していることで、上方へ 向かう直接波の合成に効果的に寄与する上方伝播波が観 測されにくくなる. また, 震源が密に分布していないた め、初動以前に波が現れる⁵.

(3) イメージング

合成記録にAGC処理,デコンボリューション,バン ドパスフィルタ等を適用した後,重合前キルヒホッフマ イグレーションによって地下断面図を作成する.また坑 井内に震源を設置して得た通常の坑井間記録にも同様の 処理を施す.マイグレーションの速度モデルには坑内検 層の結果を用いた.合成記録によるイメージング結果と 坑井内に震源を設置して得た記録のイメージング結果の 比較を図-6に示す.両結果とも,水平多層構造がイメー ジングされた.地震波干渉法によるイメージング結果で は,坑内震源による記録のイメージング結果と対応する 地中境界が明瞭に確認できる.

5. まとめ

本研究は、フィールドデータを用いて地震波干渉法を 坑井間反射法に応用した結果を示した.地表に震源を設 置して得た記録を相互相関処理することで坑井間記録を 合成した.この結果、反射波記録が良好に合成された. また合成記録を用いて、水平構造にほぼ鏡面反射する波 Raw data Muting noise Bandpass filtering Normalize (max amplitude) Removing S wave AGC Deconvolution Bandpass filtering Cross-correlation Synthetic cross-well record

図-4: 坑井間記録の合成フロー

図-5: 地表震源記録から合成された坑井間記録(列左)と
実際に坑井内震源を用いて得られた坑井間記録
(列右). 震源深度は上段から 28m, 100m, 170m.

をマッピングすることで地下構造をイメージングした. イメージング結果は通常の坑井間反射法による結果とほ ぼ一致した.よって、地震波干渉法を坑井間反射法に応 用し、坑井内に震源を設置せずに坑井間の地下構造をイ メングすることが可能であることが確認された.この結 果から、高エネルギーの地表震源を用いることで探査範 囲を拡大することができ、また坑井内に震源を設置す る際の困難を減らすことができると考えられる.

参考文献

- Bakulin, A and R. Calvert : Virtual Source: new method for imaging 4D below complex overburden, 74th Annual International Meeting SEG Expanded Abstracts, p. 2477-2480, 2004.
- Bakulin, A and R. Calvert : Virtual Shear Source: a new method for shearwave seismic surveys, 75th Annual International Meeting, SEG Expanded Abstracts, p. 2633-2636, 2005.
- Wapenaar, C. P. A. : Synthesis of an inhomogeneous medium from its acoustic transmission response, *Geophysics*, 68, p.1756-1759, 2003.
- 4) Wapenaar, C. P. A. :Retrieving the elastdynamic Green's function of an arbitrary inhomogeneous medium by cross correlation, *Physical Review Letters*, 93, 254301, 2004.
- 5) 白石 和也,松岡俊文:地震波干渉法の坑井間反射法への適用,物理探査学会第 114 回学術講演論文集, p.65-68,2005.

図-6: 地震波干渉法による合成記録のイメージング結果(右)と坑井内震源記録によるイメージン グ結果(左). X=0 は坑井1の位置を表し, X=50 は坑井2の位置を示す.

CROSS-WELL SEISMIC SURVEY WITHOUT BOREHOLE SOURCE

Shohei MINATO, Kyosuke ONISHI, Toshifumi MATSUOKA, Jiro TSUCHIYAMA and Hiroyuki AZUMA

The Green's function between two receiver points can be obtained by an integral of cross-correlation of between wavefileds observed at those points. This approach is called "seismic interferometry", which is also applicable to pseudo cross-well seismic records when we observe wavefield generated by sources on the surface of the earth with receivers in two wells. We synthesized cross-well seismic records with field data and applied constrained Kirchhoff migration. The synthetic records were not identical to actual cross-well seismic records perfectry because the sources were localized on the surface. However, we could obtain subsurface images between wells which well coincide with the conventional results.