断層変位に対する吸収層の圧縮特性を 求めるための圧縮試験方法の開発

玉置 久也^{1*}・谷 和夫²

¹横浜国立大学工学部 建設学科(〒240-8501横浜市保土ヶ谷区常盤台79-5) 2横浜国立大学大学院工学研究院(〒240-8501横浜市保土ヶ谷区常盤台79-5)

*E-mail:b0343024@ynu.ac.jp

断層変位による山岳トンネルの損傷を緩和するために,多殻モルタルを用いた吸収層を覆工の背面に設ける工法が 提案された.吸収層は断層変位方向にのみ圧縮するので,側方向の変位を拘束した条件下の応力 ひずみ関係を求め なければならない.しかし,従来の一軸ないし三軸圧縮試験方法では側方向に変位が生じてしまう問題があった. そこで,圧縮試験時に供試体の側方向の変位を拘束し,かつ供試体の側面にせん断応力が発生しない拘束冶具を検 討した.その結果,供試体の側面に剛なリングを一定の間隔で配置する方法が有効であることがわかった.

Key Words: tunnel, fault, compression, numerical analysis, uniaxial compression test

1. はじめに

2004 年に起きた新潟県中越地震では,断層変位によ ると思われるトンネルの覆エコンクリートの大規模な崩 落が確認された¹⁾.このような断層変位によるトンネル の損傷を緩和するため,図-1 に示す平滑化層,吸収層, 継ぎ手,摩擦除去層の4つの構造要素から成る覆工が提 案された²⁾.吸収層は,曲げ剛性が高い平滑化層と背面 の地盤に挟んで設置され,常時には覆工を安定的に支持 する高い剛性を有するが,断層変位時には断層のずれ変 位を吸収するために降伏して高い圧縮性を有する必要が ある.そのため,吸収層の材料として,剛壁に囲まれた 空隙を多量に含む多殻モルタルが提案された³⁾.

断層変位に伴うトンネル長さの変化(軸方向の伸縮)に よる継ぎ手と吸収層の逆側に設ける摩擦除去層の負担を 軽減するためには、トンネル軸を断層のずれ変位になる べく直交して立地する必要がある.この場合、吸収層の 厚さをなるべく小さくするためには、吸収層はトンネル 軸に直交する方向に大きく(最大数十パーセント)圧縮 する性能が要求される²⁾.このような材料の力学特性 を調べるには、側方向の変位を拘束した条件下における 応力~ひずみ関係を求めなければならない.しかし、側 面に作用する応力をゼロないし一定圧力に保つ一軸ない

図-1 提案された山岳トンネルの断層変位による 損傷緩和の方法(若尾,2005)

し三軸圧縮試験方法では,軸圧縮の際に供試体の側方向 に変位が生じてしまう問題がある.また剛な円筒セル内 で一次元圧縮する圧密試験では,側面に過大なせん断応 力が作用するおそれがある.そこで,軸圧縮時に供試体 の側面に過大なせん断応力が発生しないように側方向の 変位を拘束する方法及び冶具を検討した.

具を採用することにした.

2. 拘束方法及び冶具の提案

軸圧縮時に供試体が満たすべき条件は以下の 3 点である.

(1)供試体は,その内部においての応力とひずみが一様に分布する要素である.

(2)供試体の両端面と側面が主応力面である.すなわち,拘束冶具を取り付ける供試体の側面にせん断応力が 作用してはならない.

(3)供試体は一次元圧縮し(側方向ひずみは0%), 最大軸ひずみは数十パーセントである.

上記の条件(2)と(3)を満たすためには,剛な拘 束冶具と供試体の側面の相対変位を小さくする必要があ り,拘束冶具も軸方向に圧縮することが望ましい.これ らの要件を考慮すると,図2に示すように,鋼製リング を供試体の側面に一定の間隔Sで配置するリング型と, 螺旋状の鋼製巻き線を側面に設置するスパイラル型の2 種類の拘束冶具が考えられる.

リング型もスパイラル型も側面に作用する直応力 σ_r は非一様に分布するが、リングないしスパイラルが接 してない部分の間隔 S が膨れ出しを防止できる程度に 小さければ、供試体全体としての側方向ひずみを微小 に保つことができる.しかし、側面に作用するせん断 応力 τ は、リング型では接触高さ b の圧縮に抵抗する だけであるが、スパイラル型では、拘束冶具の軸剛性 に応じて供試体全体を伸長する方向に作用してしま以 上記の条件(2)に反する問題がある.また、リング 型の拘束冶具は、実験の作業性は劣るものの、構造が 単純で間隔 S を変更することができる.結果的に、上 記の3条件を満足することが可能なリング型の拘束冶

3. 試験概要

(1) 検討項目

リング型の拘束冶具を用いた一軸圧縮試験を行い,以 下の3項目を検討した.

(a) 2章に挙げた供試体が満たすべき3条件の達成度
(b) 拘束治具の適切な寸法及び計測の方法
(c) 計測される応力 - ひずみ関係の特徴

(2) 試験方法の概要

リング型の拘束冶具の使用を除いて,原則として岩石の一軸圧縮試験(JGS 2521-2000)に準拠して行った.

(3) 供試体

石膏,豊浦砂,水を用いて,表-1 に示すような配合 で供試体を作製した.直径 **D**=50mm×高さ **H**=100mm の 円柱供試体用のモールドに打設し,一日養生後に試験し た.

-1 各供試体のデータ

供試体	Α	В							
石膏 : 砂 : 水	1.4 : 0.8 : 1.0								
湿潤密度 _t (g/cm ³)	1.567	1.484							
リングの本数	6	3							
リングの間隔 <i>S</i>	12	35							
ストッキングの 有無	無	有							

0 < a < 2.5%

2.5 < a < 25% 図-3 供試体Aの破壊状況

0< a<1.5%

1.5 < _a < 7.2%

7.2% <

図-4 供試体 B の破壊状況

図-2 に示すように,供試体に載せた鉄板(直径 D=100 mm,厚さ t=1mm)に,円形断面のステンレス製リング (断面の直径 d=6mm, 内径 D=50mm)を軸方向に間隔S になるように糸でそれぞれ4箇所ずつぶら下げた.ただ し,リングの断面形状のみ図-2の矩形ではなく円形の ものを使用した.

リング同士の間隔 Sの影響を検討するために, S=12mm (供試体 A)と, S=35mm (供試体 B)の二通り で試験を行った、また、大変形時に破砕片が落下して断 面欠損が発生しないように供試体 B にはストッキング をかぶせた.

(4) 載荷・計測方法

載荷速度は 0.3%/min の変位制御で最大ひずみ 40%ま で一軸圧縮した.

軸荷重は, ロードセル(東京設計研究所, Type CLH-IMNA PC1027,容量 1MN)を供試体の下に設置して計測 し,軸ひずみは,変位計を載荷板に設置して計測した. また,供試体 B の中央のリングの外側にひずみゲージ を取り付け,圧縮に伴うリングの円周方向のひずみを計 測した.

4. 試験結果

(1) 供試体の破壊状況

図-3,4 に破壊状況を示す. どちらの実験でも, 圧縮 していくにつれてリング同士の間隔は均等に狭まってお り,軸方向に一様に圧縮していることがわかる.

供試体 A は , ~2.5%でリングの間に亀裂が入り , ま た, 0.5mm 以下の粒子が亀裂間から落下することが観察 された. __>25%ではリング間の亀裂密度が高くなり, 粒子の崩落量は増加し、 2-40%で中央のリングが破断 した.しかし,目視では全体として供試体は側方向には 膨らんでいなかった.

供試体 B の場合は, リングの間から 0.5mm 以下の粒 子が大量にストッキングに留まって,最終的には 10mm 以上側方向に膨らんだ.また,破断した供試体の数 mm 程度の小片が最終的には 20mm 以上飛び出す部分もあっ た.よって,供試体 B の場合はリングによる拘束が不 十分であると言える.

(2) 応力~ひずみ関係

図-5 に軸応力 σ_a と軸ひずみ 。の関係を示す.供試体 A は $_a=1\%程度で \sigma_a$ が 12.7MPa に達した後に一度応力が 減少したが,その後再び増加した. $_a=2.5\%$ で剛性が急 に低減し, $_a=2.5~25\%$ までは一定の剛性を示した.そ して, $_a=25$ を超えて剛性が少し増加した.また, $_a=36\%$ のところで再び応力が減少し,約 37%から増加し た.そして, $_a=42\%$ でリングが破断したため計測を終 了した.

供試体 B の応力~ひずみ関係は,供試体 A と同様に, "が 1%程度で一度ピーク応力を示し軟化した後に再び 増加した.しかし _a=2.5%から再び減少し,その後 σ_aが 増加することはなく, _a>6%ではその減少が緩やかに なった.

5. 考察

(1) 供試体が満たすべき条件の検討

図-3,4 に示した供試体の破壊状況からもわかるよう に,リング同士の間隔が均等に狭まっていったことから 供試体に生じる軸方向のひずみはほぼ一様であった.

供試体 A, Bの結果より,間隔 S ではせん断応力が作 用せず(=0),また,各リングにおける接触部分の高 さが供試体の高さに比べて十分に小さくすることによっ て(b<<S)拘束部でのの影響も小さいと期待される. また,S/b が大きければ大きいほど理論的な最大軸ひず みS/(S+b)を大きくできる.

側方向の変位の拘束については,供試体AではS/b=2 で,リングで拘束できることがわかった.しかし,供試 体BではS/b=6と大きすぎてリングで拘束することがで きなかった.これは,リング同士の間隔Sが大きすぎた ため,供試体の破断・崩落をリングによって防ぐことが できなかったと考えられる.

多殻材料を供試体に入れることを想定すると,多殻の 直径よりもSが小さく,S/bが 1~2程度であればリング は供試体の側方向の変位を拘束することができる.

(2) 応力~ひずみ関係

図-6に供試体 A, Bの応力~ひずみ関係のグラフをモ デル化したものを示す.これらは軸圧縮に伴う剛性の変 化に注目し 3 つに区分した.まず、 σ_{11} の点 A を第一破 壊点, σ & の点 C を第二破壊点と定義する.この第二 破壊点までをゾーン , σ & の点 D までをゾーン , それ以降をゾーン とし,本試験の最終値を σ & とす る.また,リングの影響がない時の破壊点すなわち点 A での軸応力を最大軸応力 q_a とする.

供試体 A,B の第一破壊直後の軸応力の減少は図-8 に 示すグラフより,供試体とリングの間に最初からわずか な隙間があったため,破壊後に供試体がリングに拘束さ れるまで膨らみ,そのため,応力が減少し,拘束されて からは膨らむことができなくなり,軸応力が増加したと 考えられる.そこで,第一破壊点は供試体が無拘束状態 の場合における破壊,第二破壊点は供試体がリングによ り拘束された場合における破壊と考える.

また,図-5 に示すように,供試体 A の軸ひずみ約 36%のところでは,リングにかかる応力にリングが耐え きれず降伏したと想定されるため供試体が再びリングに 拘束されるまで膨らみ,軸応力が減少したと考えられる.

表-2 に図 - 6 でモデル化した軸応力 - 軸ひずみ関係の 特性値を示す. fは,供試体の作製時に供試体 B のほ うに多く空隙ができてしまったため供試体 A より小さ くなったと考えられる.また, a=1~3%が破壊前の変 形の目安, a=3~25%が破壊後の変形吸収域に相当する と考えられる.

この実験結果に基づいて,例えば図-8に示すような トリリニア型の応力~ひずみ関係で吸収層の構成関係を モデル化する.また,吸収層としての役割を果たすため には,まず,高い圧縮率(数十パーセント程度)を満た すために,可能な限りゾーン を長く,そして少しでも トンネルの負担を減らすためにその剛性 E をゼロに近 づけられそうな材料を開発する必要がある.

(3) 拘束治具および計測方法

リングが破断してしまったことに対し,材料の強度不 足が考えられるので,今後は溶接部のない均一なリング を使用する.また,リングの断面が四角形のものを使用 し,接面部を増やして応力集中をなくす.

また,リングにかかる応力を計測するためにリング にひずみゲージを設置し,リング同士の間隔の変化を見

表-2 軸応力 』と軸ひずみ 』とゾーン , , のヤング率 E

供試体	$\sigma_{\rm f}$ (MPa)	σ (MPa)	σ (MPa)	σ (MPa)	ɛ _{f1} (%)	E (%)	E (%)	E (%)	E (MPa)	E (MPa)	E (MPa)
Α	12.69	17.97	24.74	80.52	0.92	2.70	24.74	41.16	637	91	259
В	10.70	9.43	4.81	2.78	0.93	1.41	4.81	17.37	669	-80.00	-12.00

るためにリングに写真測量用のマークをする.

6. まとめ

圧縮試験時に供試体の半径方向の変位を拘束し,供試体との間にせん断応力が発生しない実験方法を検討した. リングを供試体の側面に一定の間隔で配置する方法について,一軸圧縮試験を行ったところ,側方向拘束下での応力~ひずみ関係を求めることができ,供試体の側方向の変位を拘束することが可能であった.

今後の, D=100mmの実験を想定すると,不均質粒子の最大粒径はその1/5(20mm)程度で,多殻を作るのに最も単純な球状をし,経済的で入手が容易なものである ピンポン玉が適していると考えられる.これを最密に充 填した多殻モルタルで半径方向の変位を拘束した一軸圧 縮試験を行い,吸収層としての条件を満たすかどうかを 力学特性より判断する.

また,その後はピンポン玉よりもコストのかからない 廃棄物などを入れた多殻モルタルの開発に取り組む.

図-8 トリリニアモデル

 $\boldsymbol{\varepsilon}_{a}(\%)$

E

参考文献

م (MPa)

- 1) 海野隆哉,小長井一男:平成16年新潟県中越地震第一次調 査団調査速報,7.トンネル被害,2005.
- 2) 若尾和俊, 高橋秀明, 谷和夫: 断層変位を受けるトンネルの損 傷を緩和する工法の提案と効果の数値解析による検討, 第40 回地盤工学研究発表会, pp. 1817-1818, 2005.
- 3) 若尾和俊、谷和夫、高橋秀明:断層変位を受けるトンネルの損 傷を緩和するために高圧縮性コンクリートを用いた改良工法, 第35回岩盤力学に関するシンポジウム, pp.47-52, 2006.

DEVELOPMENT OF COMPRESSION TEST TO EVALUATE DEFORMATION CHARACTERISTICS OF FAULT DISPLACEMENT ABSORBER

Hisaya TAMAOKI and Kazuo TANI

To mitigate damages of tunnel by fault displacements, the use of fault displacement absorber of mortar including porous hulls as backfilling of the lining is proposed. Since the absorber layers are compressed only in the perpendiculan direction to the lining, deformation characteristics of the absorber under one-demensional compression without allowing any lateral expansion.

In this study, a new uiaxsial compression test method is proposed, in which rigid rings are placed with a certain spacing on the side of spacement to prevent lateral expansion. Two proof tests were conducted to find the appropriate spacing of the rings. The test results demonstrated that the spacing should be smaller than the side of the hull materials.