台湾チェルンプ断層掘削から得られた更新世~ 中新世堆積岩の空隙分布特性

林 為人1*・高橋 学2・佐東 大作3・漆松 雪彦3・葉 恩肇4・林 立虹4

1 正会員(独)海洋研究開発機構 高知コア研究所(〒783-8502高知県南国市物部乙200)
2 (独)産業技術総合研究所 深部地質環境研究センター(〒305-8567 茨城県つくば市東1-1-1)
³ 筑波大学(〒305-8577 つくば市天王台1-1-1)
⁴ National Taiwan University (No.1 Sec.4, Roosvelt Road, Taipei, 10617 TAIWAN)
* E-mail: lin@jamstec.go.jp

近年発生した台湾集々地震の震源断層を貫くTCDPのメインボーリング孔Hole-Aは、コアリングのテス ト区間を含めて、約450m~最大掘削深度の2,000 mまでの区間で連続的にコアを採取した.更新世~鮮新 世後期のCholan層、鮮新世前期のChinshui層、と鮮新世前期~中新世後期のKueichulin層からなる.これら の地層より採取したインタクトな岩石試料を用いて、水銀ポロシメトリー法により有効空隙率、空隙の寸 法分布などを測定した.試料の岩質分類は、頁岩、シルト岩、生物擾乱を受けた砂岩・シルト岩、砂岩の 4種類である.有効空隙率は約3%~25%の範囲内に分布している.有効空隙率や空隙寸法の分布は、試料 の採取された深度、地層、その堆積年代よりも、岩質に対してより顕著な依存性が認められた.

Key Words : TCDP, sedimentary rock, pore size distribution, mercury intrusion porosimetry

1. はじめに

1999年9月発生したマグニチュードMw7.6の台湾集々 地震の震源断層をボーリングで調査する「台湾チェルン プ断層掘削プロジェクト (<u>Taiwan Chelungpu-fault Drilling</u> <u>Project</u>, TCDP)」が行われた.このプロジェクトでは, Hole-A, Hole-Bと呼ばれる2本のボーリングを実施した. TCDPのボーリングサイト付近の地質構造の概要を図-1 に示す.メインボーリング孔のHole-Aでは最大約2,000 m までボーリングし、コアリングの試験区間を含めて、深 度約450 mから最大深度の孔底まで連続的にボーリング コアを採取した.

岩石の内部空隙構造は,流体の移動特性や力学特性な どを大きく左右するため,地球物理の観点からみて非常

図-1 地上で確認された台湾集々地震のチェルンプ断層,地質分布および TCDP ボーリングサイトの位置を 左図¹⁾に,ボーリングサイトの地質予想断面図(N85W 方向)を右図²⁾に示す. に重要な情報となる.他方,地下深部の微生物に関する 研究においては、微生物個体のサイズと空隙寸法との関 係よる微生物の移動・起源に関する検討が重要であるた め、岩石の空隙寸法測定がキーポイントになる.そこで、 本研究では、Hole-Aで得られたすべての岩種のコア試料 をサンプリングして、水銀圧入式ポロシメータ³⁾を用 いて有効空隙率、空隙寸法分布などを測定した.

2. 試料と実験方法

ボーリングHole-Aの概略柱状は、図-1の地質断面図に も示したように、地表からの順に、更新世〜鮮新世後期 のCholan層(卓蘭、1027 mまで)、鮮新世前期のChinshui 層(錦水、1027~1268 m)、鮮新世前期~中新世後期の Kueichulin層(桂竹林、1268~1712 m)、とCholan層 (1712 m~)からなる.浅部と深部にCholan層が2度出 現しているのは、サンイなどの断層の極めて大きな累積 滑り変位のためである.本研究は、約460 m~1980 mの 深度区間において、合計32深度分の測定試料をサンプリ ングした.原則的に一つの深度につき、それぞれ2サン プル採取したが、試料中に含まれるき裂により妥当性に 欠ける失敗例があったため、有効なデータは61個である. 測定した試料の岩質分類は、頁岩、シルト岩、砂岩およ び生物擾乱を受けた砂岩・シルト岩である.

水銀圧入式ポロシメータは、水銀の接触角が90°より 大きく、かつ、表面張力が大きい、すなわち「濡れない 液体」の性質を利用して、岩石内の空隙に水銀を圧入す る時の圧力を測定して、空隙の寸法を評価する測定装置 である.その測定原理はWashbum⁴⁾により提案されたも ので、ASTM³⁾により基準化された.その測定原理・測 定手順ならびに各種岩石に適用した測定結果の例は、 林・高橋⁵⁾により詳細に記されている.また,林ほか⁶⁾ によれば、ポロシメーターで測定した稲田花崗岩のマイ クロクラックの開口幅が顕微鏡で観察したそれと概ね整 合するとされており、ポロシメーターの測定結果は信頼 できると考えられる. 本研究の測定は、米国の Micromeritics Instrument Corporation 製の Autopore 9520IV を使用した. それの最大 水銀圧入圧力が 414 MPa であり、圧入可能な空隙の半径 は約 1.5×10^3 µm までである. 測定サンプルの乾燥処理 や計測手順などはすべて林・高橋⁵⁾ と同様である.

3. 有効空隙率、空隙寸法分布などの測定結果

水銀E入式ポロシメータにより測定されるパラメータ は、乾燥状態のバルク密度、真密度、有効空隙率、空隙 半径のメジアンおよび空隙半径のヒストグラム(頻度分 布)である.空隙の半径とは、本来不規則な岩石の内部 空隙の形状を円筒形と仮定した場合の半径である.これ が真の形状における寸法パラメータではなく、一種の等 価寸法である.

測定した有効空隙率と試料の採取深度との関係は図-2 に示したとおりである.同図から,有効空隙率には深度

図-2 有効空隙率の深度分布

表-1 各社	岩種の測定個数,	湿潤バルク密度,	真密度,	有効空隙率および空隙半径の最小値、	最大値と平均値の測定結果.
--------	-----------------	----------	------	-------------------	---------------

	Number of specimens	Bulk density, dry (g/cm ³)		Grain density (g/cm ³)		Porosity (%)			Median pore radius (µm)				
Lithology		Min. value	Average	Max value	Min. value	Average	Max value	Min. value	Average	Max value	Min. value	Average	Max value
Shale	17	2.52	2.57	2.63	2.65	2.68	2.73	3.13	3.98	4.95	0.0058	0.0105	0.179
Siltstone	20	2.46	2.54	2.61	2.64	2.67	2.71	3.37	4.88	7.40	0.0124	0.0228	0.0369
Sandstone with bioturbation	10	2.31	2.46	2.59	2.61	2.65	2.69	3.73	7.32	11.64	0.014	0.133	0.477
Sandstone	14	1.98	2.16	2.26	2.58	2.62	2.67	14.4	17.8	24.9	1.61	3.15	4.97

との相関が認められず、地層とも明瞭な対応関係が認め られなかった.

4つの岩質区分における各パラメータの平均値,分布 範囲の最大値・最小値を表-1にまとめた.これらのパラ メータには岩質と明確な対応関係が認められ,細粒ほど の岩種は乾燥バルク密度が高く,有効間隙率が低く,空 隙半径のメジアンが小さい,すなわち,緻密な岩石の特 性を示した.一方,粒子サイズの大きい砂岩は,ルーズ な特性を示した.生物擾乱を受けた砂岩あるいはシルト 岩の場合は,生物擾乱を受けない同種の岩石より,有効 空隙率が小さくなり,乾燥バルク密度高くなった.

図-3は、各岩種の空隙寸法分布において一般性を有す る代表的な試料の空隙半径のヒストグラムを示した. そ れぞれの岩種はそれぞれの分布特徴を有しており、特に、 頁岩と砂岩の空隙半径ヒストグラムが対照的であり、最 頻値(図-3のaとd、ピークの空隙半径)やメジアン

(表-1) が約二桁異なっていることが確認された.

測定結果に及ぼすサンプルの不均質性の影響を検討す るために、図-4中の写真に示した砂岩・シルト岩互層の サンプルを測定してみた.その空隙半径のヒストグラム は同図中の右に示した.その形状から、容易に図-3中に 示した砂岩(d)とシルト岩(b)の重ね合わせであると 理解することができる.この図からも、ポロシメータに よる空隙寸法分布の測定には十分な再現性があると判断 することができると考えられる.無論、このデータはど の岩質区分にも対応して居らず、表-1のまとめには使用 していない.

なお、同一深度(同一岩質)で採取した2つのサンプ ルの測定結果は、各パラメータの数値にしても、空隙半 径のヒストグラムにしても非常に良く一致した.したが って、この測定の再現性は高いと言える.有効空隙率や 空隙寸法分布の測定結果は地層の透水特性などを考察す るために有用な情報であり、今後は、すでに提案されて いる等価管路モデル⁷⁾により、透水係数の推定を行い、 チェルンプ断層の上盤・下盤に位置する各地層の透水特 性の概略評価を試みたい.

4. おわりに

集々地震の震源断層チェルンプ断層の北部に位置する 台湾中部台中市の郊外で行われたボーリング調査のメイ ンホール(Hole-A)より,深度約460~1980mの区間にお いて計32深度で試料をサンプリングし,有効空隙率,空 隙寸法分布などを測定した.その深度区間は,更新世~ 鮮新世後期のCholan層,鮮新世前期のChinshui層,鮮新世 前期~中新世後期のKueichulin層とCholan層からなってい る.測定試料の地質分類は,頁岩,シルト岩,砂岩およ び生物擾乱を受けた砂岩・シルト岩である.その結果, 有効空隙率は約3%~25%の範囲内に分布している.ま た,有効空隙率ならびに空隙半径のメジアンには,試料 の採取された深度,地層ならびにその堆積年代との相関

図-3(a) 頁岩,(b) シルト岩,(c) 生物擾乱を受けたシルト質砂岩,(d) 砂岩の空隙半径の頻度分布.

図-4 砂岩とシルト岩互層の供試体写真(測定前)とその内部空隙細孔半径測定結果.

性が認められず, 岩質に対してより顕著な依存性が確認 された.

 謝辞:研究試料の使用については、台湾チェルンプ断層掘削プロジェクトの Prof. Chien-Ying Wang, Fuo-Feng Ma, Sheng-Rong Song and Jih-hao Hung より提供を受けた.ここに記して感謝の意を申し上げる.

参考文献

- Hirono, T., Lin, W.; Yeh, E-C.; Soh, W.; Hashimoto, Y.; Sone, H.; Matsubayashi, O.; Aoike, K.; Ito, H.; Kinoshita, M.; Murayama, M.; Song, S-R.; Ma, K-F.; Hung, J-H; Wang, C-Y; Tsai, Y-B., High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: Nondestructive continuous measurements of physical and chemical properties in fault rocks recovered from Hole B, TCDP, *Geophy. Res. Lett.*, 33, L15303, doi:10.1029/2006GL026133, 2006.
- Hung, J-H, Wu, Y-H., Yeh, E-C., & TCDP Scientific Party : Physical Property, Subsurface Structure and Fault Zone Characteristics in Scientific

Drill Holes of Taiwan Chelungpu Fault Drilling Project, *Terrestrial Atmospheric and Ocean Sciences*, Submitted.

- American Society for Testing and Materials (1999) : Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry, Designation D 4404-84(Reapproved 1992), *Annual Book of ASTM Standards*, Vol.04.08, pp.588-592.
- Washburn, E. W.: Note on a method of determining the distribution of pore sizes in a porous material, *Proc. National Academy science*, Vol.7, pp.115-116, 1921.
- 5) 林 為人・高橋 学:水銀圧入式ポロシメーターおよび岩石 の内部空隙寸法分布の測定への適用,地質ニュース, No.549, pp.61-68,2000.
- 6)林 為人・高橋 学・杉田信隆:稲田花崗岩の温度上昇に伴ったマイクロクラックの開口幅について、応用地質、Vol.36, pp.300-304, 1995.
- 7)林 為人・高橋 学・西田 薫・張 銘:透水挙動に関する 等価管路モデルおよび堆積岩への適用例,応用地質, Vol.39, No.6, pp.534-540, 1999.

PRELIMINARY MEASUREMENT RESULTS OF PORE SIZE DISTRIBUTION OF PLEISTOCENE, PLIOCENE AND MIOCENE SEDIMENTARY ROCKS RETRIEVED FROM TCDP HOLE-A

Weiren LIN, Manabu TAKAHASHI, Daisaku SATO, Yukihiko URUSHIMATSU, En-Chao YEH and Li-Hung LIN

Effective porosity, pore size distribution and dry bulk density of shale, siltstone, sandstone and sandstone/siltstone with bioturbation retrieved from depths ranged from 460 m to 1,980 m in Taiwan Chelungpu-fault Drilling Project (TCDP) Hole-A were determined by using mercury intrusion porosimetry technique. Our preliminary results showed that the determined pore-related parameters distinctly depend on their lithology. However, the parameters did not vary with the depth from where the test samples were taken. At the same time, we could not observed the correlation between the parameters and the sedmentary formation or ages of the samples.