超臨界CO₂圧入による 岩石試料の比抵抗変化計測

尾西 恭亮1*・中塚 善博1・山田 泰広1・松岡 俊文1

¹京都大学大学院 工学研究科社会基盤工学専攻(〒615-8540 京都市西京区京都大学桂) *E-mail: onishi@kumst.kyoto-u.ac.jp

地球温暖化対策としてCO₂の地中固定が有望視されている CO₂地中固定の経済性向上には,排出源近 傍において,地中固定に適した帯水層の探査とその評価手法の精度向上が欠かせない 圧入CO₂のモニタ リング技術の精度向上と岩石コア試料のCO₂置換挙動解析手法の確立を目指し,本研究では高圧実験装置 を用いた岩石試料へのCO₂圧入試験を行った 気体,液体,超臨界状態の三相のCO₂注入による,岩石試 料の比抵抗の時間変化を測定した 観測の結果,CO₂圧入に伴う比抵抗値の上昇が観測された また,アー チーの式を用いて観測比抵抗値から置換率を推定した さらにこの値は,岩石試料からの排出量から計算 される置換率と整合性が高く,推定精度が高いことが示された。

Key Words : carbon dioxide, geological sequestration, supercritical, resistivity, global warming

1. はじめに

地球温暖化の主要因とされるCO₂の大気中への排出を 抑え,温暖化の進行を抑制する技術の開発が求められて いる 地中へのガス圧入技術は石油生産井で常用される EOR (Enhanced Oil Recovery:原油増進回収法)等で確立 された技術を転用可能なことからも現実性が高い本研 究は,帯水層への貯留可能量や貯留安定性の評価手法の 開発に必要な,貯留モニタリング手法の開発を目指して 行った

CO₂地中固定の施行は既存技術で十分可能であり,技術的な課題は比較的少ない現在直面する問題は経済性に集約されるなるべく排出源に近く効率的に圧入可能

な帯水層を精度良く評価することが経費削減につながる そこで、本研究では室内試験による岩石試料中への CO2の圧入および物性値変化の観測を行った。本研究で は、地下の高圧状態を再現した圧力容器内において、岩

石供試体にCO2を圧入し比抵抗を経時観測する実験を行った。CO2は電気的不良導体であるため、孔隙が一般地層水からCO2に置換されると岩石の全体比抵抗が上昇すると考えられる。

2. 実験方法

(1) 実験仕様

地下の高圧条件を再現するため、圧力容器内に岩石試 料を封入した 圧力と温度を調整し、二酸化炭素は気体、 液体、超臨界の3相の条件で実験を行った シリンジポ ンプを圧入側と排出側に1台ずつ配置し、一定流量によ る安定圧入を実現させた シリンジポンプと圧力容器の 間にはバッファ(内容積300ml)が配置されている これ らのバッファは模擬地層水のCO₂飽和させるためと、シ リンジポンプへの模擬地層水への流入を防ぐ目的で設け られた 以上の方式は薛、大隅(2005)の弾性波実験の方 式に準じている¹⁾ 圧力容器の温度制御にはサーモスタ ット付き電熱線ヒーターを用い、圧入CO₂の温度制御に は恒温水循環装置を用いた 図-1にシステム全体の模式 図を示す

図-2 岩石試料と電極配置. 5つの環状金属網が電位電極

岩石試料は直径5cm,長さ12cmのベレア砂岩を用いた (図-2)用いた供試体の浸透率は150mdである間隙率は 18.3%である層理面に対し直交方向に間隙流体を圧入した 試料の両端面に円形網状の印可電極を配置し,試料 側面にリング状の計測用電位電極を2cm間隔で計5つ設 置した印可電極および計測用電位電極ともに,銅網に 銀メッキを施したものを用いた計測用電極電位を計測 し,電極間の比抵抗を算出した CO2の層状態を確認す るため,白金抵抗温度センサを試料側部設置した

模擬地層水は1.0Ωmに調整したKCL溶液を用いた 岩 石試料の両端面は,岩石試料への間隙流体の流入および 流出を平滑化させる目的で設計された,ステンレス製の エンドピースで固められている 流体の入出経路は途中 絶縁部を介して構成されており,電気的に外部と乖離さ れている 岩石試料の側部は,はじめに薄い耐水ボンド で耐水加工された上に,肉厚約1cmのシリコンゴムで覆 われている 表面電流を極力低下させるとともに,外部 の封圧流体領域との遮断を図っている

(2) 実験手順

実験手順は以下のように行った。

- ①試料に電極を取り付けて周囲をコーティングし、高圧 容器内に設置する
- ②装置全体を真空引きし(10時間以上),間隙および配 管内を脱気する
- ③初期封圧をかける
- ④真空状態になった間隙及び配管内をKCL模擬地層水で 飽和する。
- ⑤目的圧力まで段階的に圧入圧力を上昇させる。この時 封圧圧力は常に圧入圧力より高めに調整する
- ⑥模擬地層水にCO2を溶解させる(10時間以上接触)
- ⑦CO2飽和模擬地層水を間隙中に送出する
- ⑧印可電極に電流を流し(0.2Hz),電位計測を開始する。 ⑨シリンジポンプを駆動し、一定流量でCO₂を圧入する。

表-1 設定した温度圧力条件

Phase	Gas	Liquid	Supercritical
Hydrostatic Pressure (MPa)	5	13	13
Pore Pressure (MPa)	3	10	10
CO ₂ Injection Pressure (MPa)	3.0-3.1	10.0-10.4	10.0-10.4
Temperature of Injection CO ₂ (°C)	15.5-17.6	17.5-18.0	37-38

⑩電位変化が認められなくなるまで、または受け側のバッファ容量が尽きるまで、計測を続ける。

計測は同種の岩石試料(ベレア砂岩)において3種の 温度圧力条件で行った 各温度圧力条件を 表-1 に示す 各条件を二酸化炭素の相図へプロットした図を図-3に示 す 各条件は二酸化炭素が気体状態,液体状態および超 臨界状態の場合に相当する また,各相条件下において, 圧入流量を0.5ml/min, 3ml/min, 10ml/minの3種に設定し, 挙動観測を行った したがって,実験数は3×3で,計9種 となる

3. 実験結果

(1) 比抵抗変化

図-4に測定結果から算出した時間経過による比抵抗変 化図を示す気体,液体,超臨界状態のいずれの場合で も、00²注入量の増加とともに比抵抗値の上昇が観測さ れた注入量がある一定量を超えるとその値は収束に向 かった

(2) 置換率

比抵抗値の置換率への変換を検討する ここでは、変 換に際しアーチーの式の利用を検討する 本実験で用い た砂岩試料の間隙率は18.3%であり、アーチーの式の適 用範囲内と言われる10~40%内である 次に間隙流体の比 抵抗は1Ωmである 既往論文によると、この程度の比抵 抗値では標準的な岩種において、境界付近ではあるが、

アーチーの式の適用範囲内となっている² したがって, 本研究では置換率の推定にアーチーの式を用いた

アーチーの式3)

$$\rho = a\phi^{-m}S_w^{-n}\rho_w \tag{1}$$

を変形し、00,置換率 R の導出式

$$R = 1 - S_w = 1 - \left(\frac{a \cdot \rho_w}{\rho \cdot \phi^m}\right)^{\frac{1}{n}} \qquad (2)$$

が導かれる

ここで、 S_w は間隙水飽和率、 ρ は岩石試料全体の 比抵抗, ρ_{μ} は間隙水の比抵抗, ϕ は間隙率である. また, a, n, m は岩石試料により定まる定数である. a, n に関しては一般的な砂岩の値, a=1, n=2を 採用した. m は間隙が水で飽和されている状態, すな わちS_w=1の状態の計測値から導出した.本実験試料 では*m* = 1.92 となった.

アーチーの式を用いて計測比抵抗値から求めたCO。置 換率(飽和率)の値を図-5に示す 図中〇印は比抵抗値 から求めた推定置換率で、*印は実験後の装置からの排 水量から求めた置換率である 両者はほぼ同様な値を示 している 液体状態の圧入流量0.5ml/minでは相違幅が大 きいが、全体傾向から考えると、排水量の計測誤差の要 因が大きいと推定される このことは、現場計測におい て、比抵抗探査により高い精度でCO2置換率を推定可能 であることを示していると考えられる

図-5において、置換率は気体状態に対し、液体および 超臨界状態が高い値を示すことがわかる 液体と超臨界 相では同様かやや液体が高い置換率を示すことがわかる 気体、液体、超臨界とも、圧入流量10ml/minの記録が低 めの値を示している.1回の作業行程で最大300ml程度し

図-5 置換率 (FR=Flow Rate, SC=Supercritical)

か圧入できない実験装置の制約により、圧入過程が収束 値近傍まで十分行われなかったためであると考えられる したがって、同じ相条件で比較すると圧入流速が速い方 が置換率の向上が認められる傾向にあると言ってよい

(2) 貯留量

次に、試料中にCO2が貯留された量で比較した図を示 したい これに先立ち, 各条件のCO2密度の情報が必要 となる 図-6にCO₂の温度と密度分布を示した 図-6は日 本機械学会(1983)に掲載されている値を抽出し、図化し たものである4 図-6には相状態の境界が明記されている 図の中心(7.38MPa, 31.1℃)の超臨界点を中心に上側が 液体条件、右側が超臨界条件、下側が気体条件となって いる 左側の領域の状態ではCO2は存在し得ない

図-6からわかるように、同じ圧力条件では液体状態よ り超臨界状態の方が密度の低下が大きい また, 当然で あるが、気体の密度ははるかに低い値を示している。図-6中の3点の星印が本実験の3つの条件に相当する気体, 液体, 超臨界それぞれ, 65kg/m³, 824kg/m³, 622kg/m³と 読み取れる

以上の値から,貯留量で比較した図を図-7に示す 貯 留量は常温大気圧条件下(25℃,1気圧)に換算した値 である この時のCO2密度は1.8kg/m³となる 貯留量の極 端に低い気体状態では効率的な地中固定は難しい また, 超臨界よりも液体状態の方が効率的な地中固定が行える ことを示している しかし,坑井の地温および圧力記録 を参照するとCO2が液体状態となる貯留層は限定されて おり,超臨界状態として圧入することが現実的である しかし,経済的に選択可能ならば,より温度の低い貯留 層への圧入を選択することが,単位容積当たりでは効率 的な地中固定が可能となる

4. まとめ

CO,地中固定の実現には地中貯留に適した帯水層の探 査手法の精度向上が必要である 帯水層に圧入された CO2の挙動モニタリング手法の精度向上、検討貯留層の 岩石試料を用いた圧入CO2の挙動解析手法の確立が求め られる 電気電磁探査を用いた比抵抗イメージングによ るモニタリング精度向上には、岩石供試体内へのCOFE 入による比抵抗変化解析が有効である。本研究では高圧 実験装置を用い、気液超臨界三相についてCO」圧入によ る岩石試料の比抵抗変化を測定した その結果, CO, E 入に伴う比抵抗値の上昇傾向を全ての相状態で観測でき た 気体状態に対し、液体および超臨界状態の比抵抗値 が高いことを確認した また、アーチーの式を用いて計 測比抵抗値からCO2置換率を推定した。推定値は排水量 から換算した置換率と同様な値を示し、比抵抗探査によ り高い精度で置換率推定が可能である結果を得た さら に、CO2の圧力温度条件と密度の関係から、貯留量との 比較を行い、地中貯留圧入条件としては液体状態が望ま しく、超臨界状態でもより低温の貯留層が効率的である 可能性を示した。今後,岩石種類,注入流量,温度,圧 力、電極配置間隔等の観測条件を試験し、様々な浸透様 式について比抵抗測定によるCO2挙動モニタリングシス テムの開発を進めていく

参考文献

- 前日,大限多加志:帯水層貯留における挙動のモニ タリング技術開発に関する実験的研究,地下水学会誌, 47,1,pp.29-44,2005.
- 2) 千葉昭彦,熊田政弘:花崗岩及び凝灰岩試料の比抵抗 測定 一間隙水の比抵抗が岩石比抵抗に及ぼす影響について-,物理探査,47,pp.61-172,1994.
- 3) 高倉伸一: アーチーの式と並列回路モデル, Conductivity Anomaly 研究会論文集, pp.127-132, 2003.
- 日本機械学会:技術資料 流体の熱物性値集, pp.197-216, 1983.

MEASURING RESISTIVITY VARIATIONS IN A ROCK SPECIMEN INJECTED WITH SUPERCRITICAL CO₂

Kyosuke ONISHI, Yoshihiro NAKATSUKA, Yasuhiro YAMADA and Toshifumi MATSUOKA

 CO_2 sequestration into a deep aquifer is considered one of the most effective methods to solve Global warming problem. In order to realize the geological sequestration of CO_2 in Japan, we need to reduce the injection cost and it is useful to increase the accuracy of characterizing reservoir for CO_2 sequestration using the inexpensive geophysical exploration method. Thus, we tried to monitor the behavior of gas, liquid and supercritical CO_2 injected into a sandstone specimen saturated with brine water by measuring resistivity variations. We could monitor the time-lapse behavior of CO_2 in a sand stone. The saturations estimated from resistivity are nearly equal to the values calculated from actual outflow volumes.