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FLUID FLOW IN A SINGLE ROCK JOINT
IN CONSIDERATION OF THE ROUGHNESS AND DEFORMATION OF JOINT
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1. INTRODUCTION

Recent concern for the safety of a high-level nuclear waste underground repository has been increasing the importance of
research on the hydraulic characteristics of a jointed rock mass. Flow in the jointed rock mass mainly occurs through joints
included. For this reason, researchers [Brown, 1987; Zimmerman et al., 1991] have tried to understand the fluid flow through
a rock joint and showed that the Reynolds equation could explain the flow in joint with rough surface.

However, when we excavate an underground opening, stress around the opening is redistributed and corresponding
changes of hydraulic characteristics of the jointed rock mass are observed [Kelsall, 1984; Pusch, 1989]. These changes result
from the opening and shearing of joints due to stress redistribution in surrounding rocks. In addition, hydraulic conductivity
or permeability of the joint is known to be highly directional dependent [Lee, 1993] and the direction dependency of fluid
flow is expected to increase when joint is sheared.

This paper provides a preliminary evaluation of flow in a single rock joint to understand changes expected to occur in an
excavated disturbed zone. Reynolds equation is solved with finite element method to obtain flowing field in the joint and

permeability is calculated to compare the difference in flow with regard to flowing direction.
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2. REYNOLDS EQUATION FOR FLUID FLOW IN JOINT

Reynolds equation is derived from the Navier-Stokes equation, which is a governing equation of Newtonian fluid flow, by
placing some assumptions such as no pressure gradient across fluid height, flow is laminar, inertia effects are negligible, and
the aperture is very small compared with the width of flow channel.

v ~(Mw<x,y)j )
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Here, h(x,y) is local aperture, p(x,y) is local fluid pressure, p is mass density, and x is dynamic viscosity of fluid.
The solution of the Reynolds equation is a pressure distribution of fluid in joint. The pressure field is differentiated and
inserted in cubic law (Q=K’ Vp/12u) to calculate mass flux or volumetric flow rate. The cubic law, which shows that the

volumetric flow rate (Q) is proportional to the cube of aperture (), is assume to be valid at every local point in the joint.
3. CALCULATED JOINT PERMEABILITY

Aperture is first computed from joint surface topographic data acquired by a laser profilometer. The aperture is defined
as the difference of heights of upper and lower surfaces. The height distribution of two surfaces is measured by the
profilometer in the interval of 3mm for the joint size of 300 mm x 300mm. The average aperture of joint is 1.79mm, when
no shear relative displacement is given and normal relative displacement is prescribed so that the contact area ratio (or
overlapped area) is 1% of total area. Figure 1 shows one of the aperture distributions and boundary conditions used in the
analysis.

Boundary conditions in solving Reynolds equation of rectangular joint surface are two kinds. Along the pressure
boundary, fluid pressure is set constant and along the no flow boundary, normal fluid flow does not occur. Pressure
gradient is given by setting different pressures on two opposite sides and flow occurs accordingly. The dynamic viscosity

and mass density are given as 1.31 x 10™ Pa -S and 999.7 Kg/m®, which are equivalent to water at 10 °C.

Pressure Boundary

No Flow Boundary

(a) (b)
Figure 1. Aperture distribution and boundary conditions used in the analysis. (a) Contour plot of the aperture
distribution. Light contour stands for large aperture region (b) The aperture distribution with boundary

conditions.

The permeability of materials which follow Darcy’s law is characterized by coefficient of permeability, k. The relationship
between the flow rate (Q) of fluid and pressure gradient (ap = p, - p,) is formulated using the permeability, O/ A=k AP/

(Figure 2a). In this study, the permeability of joints is characterized by joint permeability (k”) defined as the relation between

the flow rate (¢) and the pressure gradient (AP) in joints and the width (w) of joint instead of cross sectional area (4) as,
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g/w=k’ AP/I(Figure 2b). If we assume that the permeable materials are jointed rock masses, which are composed of
impermeable rock blocks and a number of parallel joints, the overall permeability (k) of the jointed rock mass is expressed by
the joint permeability (), since the flow rate in permeable material is the sum of flow rate in each joint.
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Here, h/s is the number of joint in the material. The joint spacing (s) is the inverse number of joint density, which stands

for the number of joints per unit length and has the dimension of [L™'] (Figure 2c).
Sometimes, hydraulic conductivity (K) is used instead of the permeability (k), when water is concerned. The hydraulic

conductivity is derived from the permeability by K = pgk/u, where p is the specific gravity, g is the gravitational
acceleration, and g is the dynamic viscosity.

Q=q’+qz+qj+. -

(a) General permeable material (b) Single joint (c) Jointed rock
Figure 2. The calculation of joint permeability
3.1 Initial joint permeability
The numerical solution of fluid flow in a joint with no shear displacement and 1% contact area is presented in Figure 3.
The aperture distribution is the same, but the direction of pressure gradient is different. Computed joint permeabilities are

4.76 x 107 [m?] and 6.58 x 107[m’], respectively and it is shown that the flow pattern and computed joint permeability

depend on the flowing direction.

(a) Pressure field (b) flow field

Figure 3. Pressure and flow field obtained as solutions of the Reynolds equation by finite element method.
Pressure gradient is set from West to East in left figures, and from South to North in right ones. (a) Light
color contour stands for high-pressure zone. (b) Each vector stands for flow direction and flow rate at each
point in joint surface. High flow rate region appears with deep color. It is seen that tortuous and channeled

flow is formed and its pattern is different with different flow direction.

—268—



3.2 The effect of normal closure
When high normal stress is applied, joint gets closed and contact area of two opposite joint surfaces increases. In the
present study, the deformation of asperity of joint is not considered. Relative normal "displacement is given and the
overlapped area is treated as closed. At five stages (1%, 5%, 10%, 15%, and 20%) of contact area ratio, joint permeability
was calculated and plotted in Figure 4 to show the difference between flowing directions at each stage. It could be seen that
dependent on the flow direction, since two surfaces match well in the condition of high normal stress. The increase of
anisotropy in permeability at the beginning of closure in Figure 4b might be explained by the fact that the permeability in

completely opened joint is close to that in parallel plate model, in which permeability is independent of flow direction.
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Figure 4. The variation of joint permeability and its difference with regard to contact area ratio. At each stage
of the contact area ratio, flows from West to East and from South to North were created. The joint
permeability in each flow direction was computed (a) and the permeability difference (k on — k 4.) was

normalized by the permeability (k y.-) of West-East flow (b).

3.3 The effect of shear

To investigate the effect of shearing of joint, relative shear and normal displacement are given. To see the characteristic
effect of dilation in shear of rough joint, results with and without dilation were compared in Table 1. The normal
displacement is either kept zero (without dilation) or controlled so that the contact area is kept constant (with dilation). It is
seen that aperture increases with increasing shear displacement due to the dilation of joint.

Figure Sa shows the relation between the shear displacement and flow directions. Solid symbols stand for the computed
permeability in South-North flow, and open symbols are West-East flow, respectively. The flow from West.to East, for
example, is parallel to the direction of shear along x direction, but perpendicular along y direction. The permeability
perpendicular to the direction of shear has little been known for the difficulty in experiments except for Yeo (1998).

If we simplify the rock joint as saw-tooth model (Figure 5b), it is expected that the change of flow perpendicular to the
direction of shear is far bigger than that of parallel when the joint is sheared. Note that the calculated permeability

perpendicular to the direction of shear is slightly greater in both shear directions in Figure Sa.

Shear displacement [x 107 m] 0 0.3 0.6 0.9 1.2
With dilation [x 10~ m] 1.79 1.68 2.56 3.01 3.09
Without dilation [x 10°m] 1.79 1.81 1.83 185 | 1.88

Table 1. Comparison of aperture changes in shear with dilation and without dilation.
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Figure 5. (a) The variation of joint permeability in two different shear directions, and (b) Saw-tooth model

and flow directions in shear
4. SUMMARY AND CONCLUSION

Flow in a single rock joint was examined by solving Reynolds equation with finite element method. The effect of
deformation of joints and the difference with regard to flowing direction were examined.

Plastic deformation and infillings of rough joints were not considered in this study, and an average aperture was used to
capture the joint dilatancy. These kinds of problems could be overcome by using a discrete joint element model (interface

element) to simulate the deformation of joint.
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