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1. INTRODUCTION

Watching any geological map, whether how large is its scale, one can see that geomaterials are damaged
materials and this damage is in a range of scales. Rock mass, strictly speaking, is a structural system.
The elements in this system are damaged blocks, geological structural surfaces, underground water and
so on. Damaged blocks interact each other through geological structural surface to form a structural
system. Each block has its own microstructure such as inclusions, interfaces and micro-cracks. Every
blocks are bonded by so called ’geological structural surface’ such as faults, distributive micro-cracks.
The deformation law of 'geological structural surface’ is quite different from that of intact rocks. The
deformation of rock masses is the comprehensive behaviors of intact rock and ’geological structural
surface’ as a structural system. The geological structural surface has its spatial distribution, range
and effect zone. Faults are very large in size and behave as a structural element in macro-scale, but
distributive micro-cracks are very small in size and distribute in all rock masses except the geological
structural surface. Each micro-crack has a little effect on the mechanical properties of rock blocks so it
cannot be regarded as a structural element in macro-scale. But a lot of micro-cracks have great effect
on the macro-properties of rock blocks. thus on the mechanical properties of rock masses. In order to
consider the interactions between macro-cracks and micro-cracks the method proposed by Wang and
Ichikawa(1995a) is extended in this paper.
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2. STATEMENT OF THE PROBLEM

2.1 Fundamental equation in an incremental form

Governing equations

Equilibrium equation Geometrical relation
0ATE; 1,0A4 (?Au
1] 5 ) = . . € ]
——az_,- +Afi(zt) =0 Agy(uf) = 2( (’)a:, o, 2} in QF x AT (1)
Constitutive equation of each material
Ao = Efy(, €2, )Acu(Auf) in QF x AT except interface J 2

where superscript € (¢ = x/y) denotes Y-periodicity and 0 < € « 1. y is the fast spatial variable
in a unit cell and = is the slow spatial variable, almost fixed in the unit cell. [y (x,e2:t) is the
modulus tensor, being oscillatory on fast spatial variable y. It satisfies the symmetry condition such

that Ef(x,e%;t) = Efylx,edit) = Efulw, Q1) = ESp(x,e%;t). Deformation modulus is the

rs?

function of strain / stress history. In fact, Eq.(2) expresses a generalized constitutive law. Note that
ut(z,y;t) = u(z,y; t)ly_g; o5; = 0i(z, Y3 f)ly_z and £f; = €;;(x, y; )ly z are the displacement
vector, stress tensor and strain tensor, respectively. They are all Y-periodicity at any time t. That is,
o(x,y) = p(x,y + Y) where ¢ is an abstract Y-periodicity function, and Y the minimum periodicity

of microstructures.

2.2 Boundary conditions

Boundary conditions should be divided into external boundary which is the boundary of domain
and internal boundary or imperfect bonding which describes the properties between sub-domains of 2°.
2.2.1 External boundary I'p and I'y

Aogn; = AF(x;t) on Trpx AT A = Aux;t) on Tox AT (3)

2.2.2 Imperfect bonding or internal boundary
The micro-slip mechanism at interface is very intricate (Bandis et al. 1983). But generally

a) Traction on an interface J is continuous, which is a basic requirement of static equilibrium:
[Agim] =0 )
[#] denotes the jump of e , and n; is the directional cosines on interface J.

b) Displacement on J may be discontinuous. Slipping obeys the constitutive law of interface generally:
f(e)[Ad); = [Dleplau] in 4, — v, coordinates (5)
f(€)|Aoly = (DleplAul; in n—s coordinates shown in Fig.1 (6)

f(€) = € case has been studied by Wang and Ichikawa (1995a). Generally f (€) can be expanded as

f(€)=A0+A16+A2€2+-" (7)
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A= 1 When (z,y) € Faults A — 1 When (z,y) € Faults
1o When (z,y) € Faults 710 When (z,y) € Faults

if there is no micro-distributive crack, Ay = 0. Where {Ac¢]y is the traction increment on J, [Au]; the
jump of displacement increment, and [D],, the stiffness matrix of joint materials. They are all expressed
in y; — y2 coordinates. Subscript J shows that quantities are expressed in interface local coordinates
n-s shown in Fig.1. ¢ is the measure of the relative size of a unit cell compared to that of the global
problem. Introduction of effect function f(e) in Eq.(5) and (6) indicates that the equation is suitable
not only for the local problem (unit cell or REV), but also for the global problem. This expression is
different from that thereinbefore(Wang and Ichikawa 1995a). For example, when ¢ — 0, that is. the

unit cell is very small, the effect of micro-cracks in a unit cell will reduce to zero, too.

A simplified constitutive model of crack or interfaces pro-
posed by Goodman et al.(1968) can be written as if nondi- ° s
latant joints are considered. el

f(e)Ao, = K.[Aw,] f(e)Ao, = KJAu,] (9)

K, 0 b2

or (D] = [ 0 K } but general form is [D],, =
n
KS Ksn
Kﬂ-s Kn
Ichikawa 1995b). Here K, is the normal stiffness, K, the b_b‘“‘:‘l
shear stiffness, K,, the dilatancy term, and K, the in-
ternal friction term. Note that Aw, = Awu;n; and Ao, =
Ao;n;n; are components in normal direction of Au and
Ao, respectively, and similarly (Aw,); = Au; — Auyn; and ) 4-Node Joint Elesment
(Ao,)i = Aoynj — Aoyn; are components in tangential
direction. Fig.1 Local Coordinates and Joint Element

() Local Coordinates n-s

on the n — s local coordinates (Wang and 1",

4 ¢
'L"

[
~

L 1

3. LOCAL PROBLEM AND GLOBAL PROBLEM

Suppose that the displacement can be expanded as a series of ¢:
Aus(x;t) = Aud(x, y; t) + eAul(z, y; 1) + XA (z, g5 1) + - - (10)

where Aug(z,y;t) = Aug(z,y+ Y;t) (0 =0,1,2,--) is Y-periodic.
The chain rule of differentiation suggests

d a 10
9,10 (11)

d.’l),‘ 6.’1),‘ 3 dy,
Governing equations and boundary conditions are expanded separately by Eq.(10). After some

mathematical treatment, a global problem and a local problem are finally obtained as follows®

Global problem

3The crack or interface, even though how large is its range or size, can be regarded as special internal boundary in the
domain Q¢. This implies that domain QO is fissured or non-smooth. Special care should be taken to treat such a problem
with Gauss-Green theorem (Okada and Nemat-Nasser 1994).
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0{Aay;)

aij + (A fiz,y;1)) =0 in Q (12)
A 0 _ 1 M + (()A’Ug A'l 0(m ) — A‘ 0( ) . O 13)
€5 = 5 61'j oz AT, Y) = Au (T m 4! (
(Aoy) = ElAcy in © (14)
dwy ot
1 —_ = 1_1 kil
Ukl |y|/ I: ayﬂ] [5pk5ml ()ym ll/+ |Yl /{Iw ])pq ]1(1.] (15)
with external boundary condition
(Ao}j)nj = AF(z;t) on TIp Au? = At (x;t) on Ty (16)
and internal boundary
[Ac’]y = (D]plAul] on faults (17)

This is a closed problem if characteristic functions w;j are known.
Cell problem

€0 1 HEguberd ()Lz KA GO, .
{E,i,,J Ers: )[AE + 4]} =0 or ’()yJ = ()z]] Agy inY (18)

with Y-periodic boundary condition for unknowns Ak, or Aul(z, y;1). Aed; is known for cell problem.

And internal boundary condition

[Act)y = [D]ep[Anl] onJ (19)
Where
1 [0Aug  OJAuS
of . = P2 ij=123 a= =2z, or 1 20
Aegf = 2{0[3]_ + ’dﬁi} Li=123 a=012, f=um ory (20)

4. SOLUTION FOR LOCAL PROBLEM AND GLOBAL PROBLEM

4.1 Solution for the local problem
The weak form of the local problem is

0 dAuL LS,
= | Byt i ty = '—/ ——HEA o i 1 21
/yj By, [ LR ] vi(y)dy v "By, euli(y)dy (21)

in which v;(y) is an arbitrary Y-periodic function with respect to y;. Au', which satisfies the internal

constraints Eq.(19), is also Y-periodic. Eq.(21) can be rewritten as

OAuL dvi( y) iy
[aclimilial + [ Eg T / Fegy 22 Jay Ac, (22)

Note that this gives the fundamental equation including joint element in a unit cell. Its characteristic

function w(y) is defined as Au, = —w(y)Aef; + gy(x). So the normalized form by Aef; is
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Ok v (y) - Ovi(y)
ki : E p J L — e L .
/JDqulwq BJ[VP(y)]]JdJ + \A] EzJpq (t)yq (:)y] dy A bz_;kl (r)y] d'/ (23)

4.2 Solution for the global problem
The weak form of global problem is

/Q<Af,->5vidv + -/I‘p AFbuds = /Q AE?jEfjkI(sEkld’U + /me[[Au?]]JK,-j[IA'Uj]]JdI" (24)

Where the weight function év; is continuous on variable ® in ¢ except faults. dv; = 0 on I'g.
5. A NUMERICAL EXAMPLE
Fig.2 is the global structure and the microstructure. There is a fault in the global structure and the

microstructure has a crack in the inclusion. All are assumed to be linear except the behaviors of cracks.

Fig.3 is the relative displacement of two micro-cracks near and far away from the fault.
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Fig2 The global structure and the microstructure Fig.3 Relative slippage in different points

6. CONCLUSIONS

The proposed method can describe the interaction between macro-cracks and micro-cracks. The

behavior of micro-cracks is obviously observed in the simulation.
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