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(37) CHARACTERISTICS OF MICROTREMOR OBSERVED AT A DAM FOUNDATION WITH DEPOSITS

by
T.Ohmachi*, S.Kataoka** and S.Soga**

It 1is known that earth and rockfill dams are adaptable to disadvantageous
foundations such as uncemented deposits and soft rock. However, from a viewpoint of
earthquake resistance of dams, there remain several important subjects still
unclarified but required to be urgently solved for future dam construction. Among
these are earthquake characteristics at such foundations and dynamic interactions of
a dam-foundation system. On this basis, micro~ tremor measurements were carried out
on and beneath an existing large dam named Kassa Dam.

Kassa Dam is a center core rockfill dam with the maximum height of 90 m and the
crest length of 487 m, forming an upper reservoir for a pumped storage power station
which is located at about 2 km distant from the dam. Hard dacite (Da) is exposed
over the entire right-bank side of the dam site, but on the left-bank side,
uncemented deposits mainly of volcanic mud flows (Vm) thickly cover basement rock of
the dacite, as shown in Fig. 1.

The measurements were done on summer fine days, using instruments having overall
response characteristics shown in Fig. 2. Figs. 3 (a) and (b) give examples of
horizontal displacement waveforms of microtremor observed at the left abutment, with
Fourier spectra shown in Fig, 4 in which those for observed at the right abutment are
also shown. The microtremors &dt both the abutments show significant differences in
the specral shape, and the amplitude level at the left abutment is two or three times
larger than that of the left abutment. A frequency component of 6.25 Hz is due to
generation at the power station.

Similar measurements were done at different six  observation stations
simulatneously. The stations were selected at Cl, C2 and C3 on the crest and Gi, G2
and G3 in the inspection gallery for CGl-series, while C3, C4 and C5 on the crest and
Gl, G2 and G3 in the gallery for CG2-series which was measured at about three hours
later than CGl-series. Fourier spectra of the horizontal displacements in the
upstream-downstream direction are shown in Figs. 5 and 6 for which £frequency
components lower than 1.4 Hz were filtered away. The facts that overall vibration
level in CG2 is almost twice as large as that in CGl, and that spectral shape is
dissimilar to each other will dimply non-stationarity of the microtremors at the
foundation. In Fig. 5, three spectra at Sts. Gl, G2 and G3 are similar in the shape
with inequality in the level as GI1>G2>G3, suggesting that the foundation was in a
stationary state over a wide range of frequency during the observation. While in
Fig.6, it should be noted that several peaks at frequency higher than 2 Hz visible at
one station cannot be found at other stations in the gellery. Thus, rock foundation
and deposits appear to be in a different vibration state, at least in a frequency
range over 2 Hz.

The spectral amplitude are replotted in Figs. 6 and 7 as a ratio againt those at

G3. The spectral ratios for C3/G3, G1/G3 and G2/G3 have somewhat similarity in the
shape, which will imply that the deposits are likely to behave just like a portion of
the embankment dam. A frequency component of 2.3 Hz included in the microtremor of
the deposits seems to have induced a vibration mode of the dam corresponding to the
frequency. Referring to the results of forced vibration tests and earthquake
observations (Ref. 3), the fundmental period of the dam 1s arround 2 Hz. It is
natural that higher modes should be readily induced by such difference in the
foundation movement. Further study using numerical and experimental models of the
dam-foundation system is required for more detailed quantitative analysis.

* Associoate Professor, Tokyo Institute of Technology

*% Graduate Student, ditto
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