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1. INTRODUCTION

Simulation of multi-phase flow problems is an
important topic in modern research. In such
problems two immiscible fluids of different phases
(liquid and gas) are present in the problem domain.
A typical example for such problems is modeling of
surface water waves. Boundary layer methods were
applied widely for such problems”. However in
CFD methods, the fluid governing equations are
solved numerically and viscous effects are applied
directly to the whole domain. Constraints due to
perturbation parameters present in boundary layer
methods are absent in CFD. Numerical solution of
flow equations demands determination of gas-liquid
interface location (curve in 2-D and surface in 3-D),
to provide fluid properties. Two methods are
mentioned extensively in the literature for doing
such task; VOF and level set. A disadvantage of
VOF is the discontinuity in gas-liquid interface
between computation cells”. Also in VOF careful
calculation of mass flux across cell boundaries is
needed”. The absence of such step in level set
method makes it simpler. The present work adopts
the level set method. In the level set method, the
computation algorithm is broken into two main
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blocks. Upon substituting the fluid properties in
Navier-Stokes solver block (NSB), the fluid
velocities are obtained, and the gas-liquid interface
location is updated in the fluid interface block
(FIB). Such cycle is illustrated in Fig. 1.

Interface Location

v and fluid properties

Navier-Stokes Block
(NSB)

Fluid Interface Block
(FIB)

I Flow Velocities T

Fig. 1 Main blocks and main cycle of level set method

Upon designing FIB, two decisions should be
taken; the form of the color function ¢ used to
present liquid-gas regions, and the method for
advancing ¢ in time. One possible form of ¢, is
assigning it a value of one and zero in liquid and gas
regions respectively ( ¢1_g ). Another form is
assigning ¢ to the distance from the interface (¢4).
Both forms are compared in Fig. 2 where a liquid
drop surrounded by gas is illustrated.

Both ¢;_o and ¢, are advanced in time by
solving an advection equation. Two candidate
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methods for that task are a CIP type or an ENO type
solver. In the current literature ¢,_, is always used
with a CIP type solver” ¥ ©. On the other hand
ENO type solvers are always used with ¢,”®*. In
the present work the reason of such coupling is
clarified. Also different configurations are compared
to reveal their advantages.

Fig. 2 Representation of a liquid drop surrounded by a gas,
leftis ¢;_o andrightis ¢q4.

2. COMPARISON OF ¢; AND ¢,

In the present section both presentations (¢1_g
and ¢, ) are detailed. Since ¢ is advected
passively with the fluid, both presentations are
integrated in time using Eq. (1).

a¢
FTRAA (Vo) =0

For an incompressible fluid, fluid properties of
interest are the density p and the viscosity u. For
both presentations fluid properties are calculated
using Eq. (2):

)

p= pL¢comp + pG(l - ¢C0m}9)

u= ”Ld’comp +ug(l— ¢comp)
where u;, p;, dg and y; are dynamic viscosities
and densities of liquid and gas respectively. ¢comp
is computed using Eq.(3).

2

0 ifp_o <€
¢comp = 1 if,o>1—¢€ (3a)
b1-0 else
0 if gy < —5
1 ifpg > 6
¢comp = Thy ba (3b)
0.5 (1 + sin (T)) else

Eq.(3a) is used if ¢;_, is adopted while
Eq.(3b) is used if ¢, is adopted”. € is an
arbitrarily small parameter selected as 0.05 in the
present work. On the other hand & is calculated
from Eq.(4) using A the grid size

max — <lbmin
6= > =1.5A 4)

Fig. 3 illustrates both formulations near the
gas-liquid interface. Considering Fig. 3, Eq.(2), (3)
and (4) the following notes should be mentioned.

A major drawback of ¢,_, presentation is the
uncontrolled thickness of the gas-liquid interface
region. Due to the sharp transition from 0 to 1, such
thickness should not exceed A . However such
width cannot be achieved in practice due to
numerical errors upon solving Eq.(1). On the other
hand when ¢; is wused, Eq.(5) is solved
(re-initialization), after Eq.(1).

0
P4 _ sign(9a)(1 - V)

, d
_ fﬂij H (¢d) %

—————H (¢)IVpal ()
Jo, H (@)(®0)

Definition of terms appearing in Eq.(5) (H, Qij,
etc.) and solution steps are omitted due to space
limits, however full details are provided by
Sussman®. Solving Eq.(5) consumes extra time, but
assures that the slope of ¢, is kept equal to unity.
Also careful re-initialization does not change the
interface place (intersection between ¢, and zero
level) and ensures mass conservation.
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Fig. 3 Typical form of ¢4 (up) and ¢;_o (down) near the
gas liquid interface.

3. COMPARISON
SOLVERS

OF CIP AND ENO

(1) CIP solvers (CIP-CSL3)

The goal of using a CIP or an ENO type method
is solving Eq.(1) accurately. Providing a full review
of various CIP type methods is beyond the scope of



the current work. However CIP-CSL3 method is
selected as a typical example of such solvers.
Following the pioneer work where the original
version of CIP method'® was introduced, the
enhanced version CIP-CSL3'" was suggested and
widely applied® ©- 'V 12,

The logic of CIP-CSL3 method is based on
splitting Eq.(1) into two phases

o6 L (62)
S T (V) =0

0 - ~

§+¢(V'Y)—0 (6b)

Using the method of characteristics, Eq.(6a) is
solved as:
d(X,t) = d(X — VALt — At)
=¢" (X - VaAY) @
The Lagrangian solution at t ($) is obtained
from the old solution (at t—At) by direct
substitution. After ¢ is obtained, the new
solution ¢ (at t) is obtained from Eq.(6b) by
explicit finite difference. The main difficulty in such
concept is the need of adequate interpolation of the
space profile of ¢p"~1. For a discontinuous profile,
interpolation using polynomials leads to spurious
oscillations (Gibbs phenomena'”). In CIP-CSL3 a
cubic spline is used for interpolation. Compared to
the original CIP method'?, the fictitious oscillations
are much reduced in CIP-CSL3. Also partial
derivatives are not included.
The CIP-CSL3 method is based on a
one-dimensional (1D) subroutine where two vectors
are updated. The two vectors are ¢, and 4,

which are respectively the function value at the left
boundary and the function average at cell i
Undesired oscillations are reduced by careful choice
of the space derivative at the cell center. Extension
to two-dimensions (2D) is achieved by applying the
1D procedure sequentially in alternating directions.
In two dimensions the function value is no longer
used at the cell boundaries. Instead ¢, is

defined as the surface average at the left face of cell
i, j. Upon applying the 1D algorithm in one
direction, the face averages in the other direction are
not updated. Such difficulty is treated by using the
TEC equation'”, where surface average values are
updated using cell average values. The full details of
CIP-CSL3 method is found in Xiao'".

(2) ENO solvers (WENOS)
In ENO type methods, The flux term in Eq.(1)

(V- (Vo)) is discretized by interpolation of Vd.
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Such interpolation is done using a weighted sum of
all possible Lagrangain polynomials'”. The weights
are selected to decrease the undesired oscillations.
Among the various ENO methods, WENOS is
selected as a typical example in the current work.

In WENO5 method three 3™ order Lagrange
polynomials are summed. The resulting scheme is
5™ order space accurate. Special care is needed to
obtain correct entropy solutions. Depending on local
velocity values, up-winding, down-winding or flux
splitting is used'?. Time integration of Eq.(1) can be
done with different schemes. In the present work
integration is done using forward Euler explicit
method. For a comprehensive discussion about ENO
methods and a detailed description of WENOS

method the reader may consult Shu'®.

(3) CIP-CSL3 versus WENOS

Here we compare between the performance of
CIP-CSL3 and WENOS. In addition to the function
values required in WENOS, the function volume
and surface average are required in CIP-CSL3. Such
requirements need extra memory and complicate
analysis. Another advantage of WENOS5 over
CIP-CSL3 is the relatively simple extension to
multi-dimensions.

The semi-Lagrangian concept of the CIP-CSL3
method is straightforward to program and
understand. The relatively complicated process of
flux splitting required in WENOS is absent in
CIP-CSL3. However the semi-Lagrangian concept
complicates application of CIP-CSL3 to hyperbolic
equations with a source term at the right hand side
like Eq.(5). It is not a trivial task to do
re-initialization using CIP-CSL3. The authors
believe that, this is the reason why CIP-CSL3 is
always used with ¢,_, where no re-initialization is
needed. In the present work ¢4 is used with
CIP-CSL3. Eq.(5) is solved separately with the
method described in Sussman®. In order to maintain
consistency, the solution of Eq.(5) is substituted into
TEC formula and the surface values used in
CIP-CSL3 are updated.

4. RESULTS AND DISCUSSION

(1) Verification and comparison

In the next section results from applying
different choices are shown. Three combinations are
presented, ¢;_o with CIP-CSL3 (CSL3-SHRP),
¢4 with WENOS (WENO-DST) and finally ¢4
with CIP-CSL3 (CSL3-DST). CSL3-SHRP and
WENO-DST were applied widely”®'?'9 A new
option examined in the present study is CSL3-DST.
In all cases CCUP method'” is used to solve the
incompressible flow equations in Navier-Stokes



solver block. The three options are tested against the
benchmark dam-break problem.
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Fig. 4 Dam break problem configuration

In the dam break problem a column of water is
initially held behind a barrier. The barrier is
suddenly removed and the water column collapses
and flows under gravity (see Fig. 4). No slip
boundary conditions are applied at left and lower
boundaries. For right and upper boundaries,
extrapolation boundary conditions are applied to the
velocities. Such problem depends on the following
parameters:

R=V.py[vy s M =Mty s Pru=Pu/Pg
are the Reynolds
number and water gas viscosity and density ratios,
respectively. The characteristic velocity V, is
given by \/m The characteristic length and time

are takenas L and /L/(2g), respectively.
The problem is calculated for two cases. For

both cases pqr =56.04 and p,q = 8317 .
While for case 1 and case 2 R, is equated to
6x10* and 1.43x10°, respectively. The values are
taken to be consistent with the experiment done by
Martin'®. Although such measurements are old, they
are still used for validation by modern works®"”.

where R , u, and p,,
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Fig. 5 Free surface profile, WENO-DST, case 1, t=0,1,2,3.

In Fig. 5 a typical simulated free surface profile
is shown is shown. Fig. 6 shows the calculations by
the three combinations against measurements (water

front location). An equidistant Cartesian grid is used.

Grid size is 150 x 125 divisions in the horizontal
and vertical directions respectively. 20,000 and
25,000 time steps are used to reach t,,,, = 4.0 for
case 1 and case 2, respectively. For case 1, deviation
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between simulation and measurements increases
with time. For case 2, the agreement between
simulation and measurement is better. The same

observation was made by Kelecy™.
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Fig. 6 Front Position versus time. Up is case 1, Down is case 2.

Free surface profile at t+=4 for case 1 is
shown in Fig. 7. The surface profile is marked by
the value of ¢¢ymp=0.5. The contour plots extend
from ¢comp=0.05 to 0.95.
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Fig. 7 Free surface profile at t=4. Top to bottom is
WENO-DST, CSL3-DST and CSL3-SHRP.

The Three combinations yield very close results
in terms of the front position (see Fig. 6). However
the surface profile resulting from CSL3-SHRP is
relatively irregular.

It is clear from the present section that ¢4 has a
valuable advantage against ¢;_o. We also note that



the computation time for the three methods were
comparable. Mentioning the complications of
CSL3-DST compared to WENO-DST (extra data
structures and difficulty in treating source terms)
WENO-DST should be regarded as the optimum
choice. It is also clear that the performance of
CCUP with the different choices is satisfactory. We
note that other Navier-Stokes solvers were
successfully combined with WENO'™'9. It is
concluded that the internal details of NSB may be
independent on those of the FIB.
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Fig. 8 Solitary wave problem definition

(2) Simulation of Solitary Wave Propagation

To further illustrate the ability of WENO-DST
Solitary wave propagation is simulated. The
problem setup (see Fig. 8) is the same as Hu" and

Tangm.
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Fig. 9 Free surface profile at different times for Re =50, 500
and 50000 (top to bottom)

In addition to the following already defined
parameters, R, , u, and p_ ., the problem

depends also on H/d , dimensionless wave height.
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The characteristic velocity is calculated as
V,, = 4/gd. The characteristic length and time are

takenas d and ./d/g, respectively. Simulation is

done for g =50.6, prqe =831.7,H/d =0.2
and three values of R,; 50, 500 and 50,000. The
wave peak is initiated at x = 8d. The simulation is
run up to ¢t=10.5, with total of 6000 time steps.
Grid size is 180 x 30 divisions in the horizontal
and vertical directions respectively.

Fig. 9 shows the surface profile at 10 equidistant
time intervals, from step 2500 to 6000. Fig. 10
shows the wave amplitude attenuation versus time.
Both theoretical results’ and current model
numerical results are shown. Numerical simulation
includes damping due to bottom friction and air drag
over the wave profile, while theoretical formula
includes only bottom boundary layer effect. That is
why attenuation rate from simulation is higher than
attenuation by theoretical formula of Mei". Such
result agrees with previous works??". Also the
difference between theoretical and numerical results
decreases as R, increases. That is expected since
the boundary layer approximation becomes more
valid for high R,.

-©--theoretical 50,000 ~—=-max hgt 50,000
—>¢-max hgt 500
- ==max hgt 50

~-theoretical 500
-#--~theoretical 50

2.5 5.5 t/v(d/g) 8.5

Fig. 10 Wave amplitude versus time

Water of depth 1 m, yields R, = 3.1 X 108,
which is a relatively practical value. For such case
velocity vectors near the interface is plotted for
different values of H/d (see Fig. 11). The three

plots shed light on the mechanism of momentum
transfer from water to air. As the wave propagates
from left to right, the air is pushed by the wave front.
However due to continuity of velocity at the
interface, air follows the wave back at the left. Such
motion induces an air vortex over the wave crest.
The vortex size and strength increase as the wave
height increases. The result from the present section
illustrates the advantage of CFD methods over
boundary layer solutions where air dynamics is
totally neglected.
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Fig. 11 Velocity vectors near free surface for H/d = 0.1,
0.15 and 0.2 (top to bottom) at R, = 3.1 X 10°

5. CONCLUSIONS

Different configurations of the FIB in the level set
method are explored. Models are verified against
dam break benchmark problem. Although different
configurations results are satisfactory, considering
regular profile and simple data structures, the
optimum choice is WENO-DST. The proposed
choice is used to simulate the propagation of a
solitary wave. The results obtained are consistent
with past works and theory. Moreover the details of
multiphase flow near the air water interface are
revealed for different cases. A powerful extension of
the present model in the future is accounting for
irregular topography and turbulence. With those
extensions the details of wave deformation and
breaking due to variable topography and
engineering structures can be revealed, providing
essential data for civil design engineers.
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