単一の衛星画像のみを用いた浅水域の相対水深分布推定法

Relative Depth Estimation Method using Single Multispectral Image Alone

神野有生¹·鯉渕幸生²·磯部雅彦³

Ariyo KANNO, Yukio KOIBUCHI and Masahiko ISOBE

A passive remote sensing method of relative depth (a variable proportional to water depth) of shallow water is proposed. It is similar in the prediction formula with the well-known regressive method by Lyzenga et al.(2006), but is unique in that it doesn't require any auxiliary input data other than single multispectral image: the coefficients of the formula is estimated by utilizing pixels of near-zero depth extracted from image, without relying on in-situ measurements of water depth or other optical properties. The accuracies (correlation coefficient between estimated and measured depth) of the both methods are tested using a QuickBird image of a coral reef area. As a surprising result, the accuracy of the new method is found to be comparable and sometimes even superior to that of Lyzenga et al.'s method.

1. はじめに

沿岸域・河川・湖沼における水深分布,すなわち水面 下の地形は,波・流れ・水質・生態系に支配的影響を与 えるため,様々な環境管理・研究活動に欠かせない基盤 情報である.ところが浅い水域では,一般的な計測方法 である音響測深の効率・安全性が低いため,十分な時空 間密度の水深モニタリングが行われていない.

そこで、浅い水域における補助的な測深手段として、 可視近赤外域のマルチスペクトル衛星画像を用いて、画 素ごとに水深を推定する方法が、数多く開発されてきた. 例えば海外では、Philpot (1989), Bierwirthら (1993), Stumpfら (2003), Adler-Goldenら (2005), Lyzengaら (2006), Kannoら(2010) などが、国内では灘岡ら(1993), 泉宮ら (2000), 鈴木ら (2002), Paringitら (2004), 二宮ら (2006), 神野ら (2009) などが、多様な方法を提案して いる. このような方法は、水平スケールの小さい起伏が 多く、かつ水が清澄なサンゴ礁において、特に有望視さ れている.

しかし、これまでに提案されてきた方法は、入力とし て衛星画像だけでなく、一部の画素における水深実測値、 対象水域の水・底質の光学特性・分布に関する補助情 報、または好条件の複数の画像を要するため、方法の開 発以外の目的で利用されることが少なかった.そこで本 研究では、単一のマルチスペクトル衛星画像のみを用い て、水深に比例する変量(以下、相対水深)の空間分布を、

1	正会員	博(環)	山口大学助教大学院理工学研究科システ
2	正会員	博(工)	ム設計工学系学域 東京大学講師大学院新領域創成科学研究
3	フェロー	丁博	科社会文化環境学専攻 東京大学教授大学院新領域創成科学研究
0	/	77.14	科社会文化環境学専攻

なるべく合理的に推定する方法を開発する.以下,2.で 理論的背景であるLyzengaの方法(Lyzengaら,2006), 3.で開発した方法(以下,提案手法)について説明する. その後4.で,提案手法をサンゴ礁水域に適用し,精度を 検証する.

2. Lyzengaの方法

(1) 水深と線形関係にある変量 X の導出

浅い水域において,衛星センサに入射する可視域の分 光放射輝度Lは,主に図-1に示した底面反射・水中散 乱・水面反射・大気散乱の4成分から成り,概ね次の放 射伝達モデルで表される(Lyzenga, 1978;灘岡ら (1993); Lyzengaら, 2006).

 $L(\lambda) = \{V + (B - V) \exp[-kh]\}TE + S + A \cdots (1)$

ここで、λは波長、Vは無限水深での体積散乱による反射率、Bは底面反射率、kは実効消散係数、hは水深、Tは 大気・水面の透過率、Eは水面直上での下向き放射照度、 Sは水面反射成分、Aは大気散乱成分である.

図-1 浅い水域の放射伝達過程に関する模式図

 $L_{\infty}(\lambda) \equiv \lim_{h\to\infty} L(\lambda)$ と,水の吸収係数(結果としてk) の大きい近赤外域の分光放射輝度 $L(\lambda_{NIR})$ に関しては,式 (1)の指数関数項を無視できる.*S*,*A*がそれぞれ,光の波 長に依存しない要因である,波浪・エアロゾルの状態に 依存すると仮定すると,*VTE*が均一かつ,*S*,*A*のうち片 方の変動が卓越する領域(例えば波高が大きく,エアロ ゾルの組成・濃度が比較的均一である領域では,*S*の変 動が*A*の変動に対して卓越しやすい)では, $L_{\infty}(\lambda)$ と $L(\lambda_{NIR})$ に相関関係が生じる.即ち,適当な係数 $\alpha_0, \alpha_1,$ $L(\lambda_{NIR})$ と, $E(\varepsilon)=0$ を満たす0に近い確率変数 ε を用いて,

 $L_{\infty}(\lambda) = VTE + S + A = \alpha_0 + \alpha_1 L(\lambda_{NIR}) + \varepsilon \cdots (2)$

と表現できる.式(2)を式(1)に代入すると、次式を得る.

 $L(\lambda) = (B - V) \exp[-kh] TE + \alpha_0 + \alpha_1 L(\lambda_{NIR}) + \varepsilon \cdots (3)$

ここで*ε*を無視すれば,水深と線形関係にある変量*X*が, 次式のように得られる.

$$X \equiv log[L(\lambda) - \alpha_0 - \alpha_1 L(\lambda_{NIR})]$$

= -kh + log[(B - V)TE](4)

ただし、右辺第2項は底質に依存するため、線形関係は 底質が同種の画素集合においてのみ成り立つ.

(2) 深い領域を利用したXの評価

水深推定に適した高空間分解能マルチスペクトル衛星 画像の多くは、数個の可視バンドと1個の近赤外バンド を有している.画像内に、*VTE*が均一かつ十分に深い ($L(\lambda)=L_{\infty}(\lambda)$ とみなせる)領域の画素集合を特定すれば、 各可視バンドについて式(2)を、 $L_{\infty}(\lambda)$ を $L(\lambda_{NR})$ で説明す る単回帰モデルとして、最小二乗法により推定できる. さらに、 α_0 、 α_1 が水深推定対象の深くない領域を含めて 均一であると仮定すれば、 α_0 、 α_1 の推定量を用いて、水 深推定対象の画素集合に関する式(4)のXを評価できる.

(3) Xの線形関数による水深の推定

以下,可視バンドの数を*M*,可視バンド*m*(*m*=1,2,…,*M*) に関する*X*を*X_m*のように表し,断らない限り他の変量に ついても同様の添え字を用いる.ベクトル:

$X \equiv (1$	X_1		$X_M)$	(5)
$\mathbf{k} \equiv (0$	k_1	•••	$k_M)^t$	(6)

$$\boldsymbol{C} \equiv (1 \quad \log[(B_1 - V_1)T_1E_1] \quad \cdots \quad \log[(B_M - V_M)T_ME_M])$$
 (7)

を定義すれば、合計Mバンドに関する式(4)は、

 $\boldsymbol{X} = -h\boldsymbol{k}^t + \boldsymbol{C} \tag{8}$

の形にまとめられる. ここで, *t*は転置を表す記号である. Lyzengaの方法では, *M*+1次元の適当な列ベクトル:

$$\boldsymbol{\beta} \equiv (\beta_0 \ \beta_1 \ \cdots \ \beta_M)^t \ \cdots \ (9)$$

を用いて,水深hを次式によって推定する.

 $h = X\beta \qquad (10)$

式(10)のhが式(8)を満たす必要十分条件は,

 $\begin{cases} k^t \beta = -1 \\ c \beta = 0 \end{cases}$ (11)

である. さらに,深くない領域の各バンドについて k,V,TEが空間的に均一であると仮定すれば,底質の種数 がバンド数M以下であることが,式(11)を満たす β が存 在する十分条件である.すなわち,底質がM種類を超え なければ,式(10)による水深hの推定値が底質に左右さ れないような β が存在する.

実際には、水質・底質に関する情報がなければ式(11) の成立性を吟味できない.そこで、式(11)の成立を期待 しつつ、トレーニングデータ(水深が既知の画素)を準 備し、式(10)を最小二乗法であてはめることでβを推定 する.

Lyzengaの方法は,放射伝達モデル(1)という物理的根拠と,推定式(10)が線形であることによる簡便性を合わせ持つ.以下に述べる提案手法は,これらの利点を継承しつつ,トレーニングデータを不要としたものである.

3. 提案手法

(1) 原理

いま, X_{I} ,…, X_{M} を軸とする直交座標系が張られたM次 元ユークリッド空間を考える.式(8)より,1種の底質の みを含む画素集合は,底質ごとに異なり互いに平行な直 線上に分布する.底質がM種類を超えないとき,式(11) を満たす β に対して,任意の水深hをもつ画素集合は, 式(10)で表される超平面上に分布する. β から第1成分 β_{0} を除いたM次元ベクトル:

 $\boldsymbol{\beta}' \equiv (\beta_1 \quad \cdots \quad \beta_M)^t \quad \cdots \quad \cdots \quad (12)$

は、この超平面の法線ベクトルを与える.

提案手法ではまず,近赤外バンドを利用して,汀線付 近の,水深hが0に近い画素集合を抽出する.抽出した 画素集合は,水深推定対象である浅い領域全体の画素集 合に含まれる底質種を全て含んでいれば,式(10)にh=0 を代入した式:

 $0 = \boldsymbol{X}_{0}\boldsymbol{\beta} \quad \dots \quad \dots \quad (13)$

が表す超平面上に,概ね分布する.ただしX₀は,hが0 に近い画素の値であることを明示した表現である.そこ で,これらの画素集合に超平面を,各画素と超平面の距 離の2乗和が最小となるようにあてはめ、その法線ベク トルの1つnを推定する。あてはめた超平面は、これら の画素集合の第1,…, M-1主成分軸と平行であるため、n は、第M主成分の固有ベクトルとして計算することがで きる。2本の法線ベクトルβ.nは平行であるから、

 $\boldsymbol{n}/|\boldsymbol{n}| = \boldsymbol{\beta}'/|\boldsymbol{\beta}'|$ (14)

ここで,抽出した画素集合のうち,複数種の底質が混 合した画素集合は,厳密には,式(13)が表す超平面上に 分布しない.これは,式(4)の右辺第2項が,底面反射率 の線形関数でないためである.しかし,nの推定に対す るこの非線形性の影響は間接的である.

さて,Xから第1成分1を除いたM次元ベクトル:

 $\mathbf{X}' \equiv \begin{pmatrix} X_1 & \cdots & X_M \end{pmatrix} \quad \cdots \quad \cdots \quad \cdots \quad (15)$

を定義すれば,式(5)(9)(10)(14)(15)より,次式を得る.

式(16)より,画像から計算できる変量X'nは、水深hと、 底質に左右されない線形関係にあることがわかる. さら に式(16)を、水深hが0に近い画素の X_0 に関しても立て、 辺々差し引けば、次式を得る.

 $h = (|\beta'|/|n|)(X' - X'_0)n$ (17)

式(17)の(X'-X'₀)nは、水深に比例する変量であり、本稿 ではこれを相対水深と呼ぶ.X'₀としては、汀線付近の任 意の画素の値を用いてよいが、実装では誤差を抑えるた め、汀線付近の画素集合に関する平均を用いる.すなわ ち相対水深とは、汀線付近の画素集合の重心を原点とし て設けた、それらの第M主成分軸上の座標である.

以下,可視バンドの数*M*が2,3で,底質の種数がMに 等しい画素集合について,提案手法の原理を図解する. なお,自明であるが,底質の種数が*M*より小さい場合に も,提案手法の実行により相対水深が得られる.

(2) 模式図を用いた原理の解説

a) 底質が2種類,可視バンドの数が2の場合

図-2に、底質がA,Bの2種類で、M=2の画素集合について、X₁,X₂を軸とする直交座標系が張られた2次元ユークリッド空間における分布を模式的に示す.底質A,Bのいずれか1種のみを含む画素の集合は、式(8)で表される互いに平行な直線上に分布する.汀線付近の、水深が0に近い画素集合が、底質A,Bを含んでいれば、これらの画素集合はほぼ、各直線上の水深0に対応する点を含む 直線(2次元の場合の超平面)上に分布する.また、これらの画素集合の重心を原点とする2本の主成分軸を設けると、この直線は第1主成分軸とほぼ重なる.これら の画素の第1主成分軸上の座標はほぼ,底質A,Bの,1 画素内の混合比に対応する.また,水深推定対象である 浅い領域の画素の,上記の第2主成分軸上の座標は,底 質に依存せず,水深のみに線形に依存する.この座標は, 水深がほぼ0の画素集合の重心を原点に設定しているの で,相対水深(水深に比例する変量)となる.もし,1 画素以上における水深実測値があれば,第2主成分軸上 の座標をスケーリングして,水深の絶対値を求めること も可能である.

b) 底質が3種類,可視バンドの数が3の場合

図-3に, 底質がA, B, Cの3種類で, M=3の画素集合に ついて, X₁, X₂, X₃を軸とする直交座標系が張られた3次 元ユークリッド空間における分布の模式図を示す. 底質 A, B, Cのいずれか1種のみを含む画素の集合は, 式(8)で 表される互いに平行な直線上に分布する. 汀線付近の, 水深が0に近い画素集合が底質A,B,Cを含んでいれば, こ

図-2 底質がA,Bの2種類で,可視バンドの数Mが2の画素 集合に関する提案手法の原理

図-3 底質がA,B,Cの3種類で,可視バンドの数Mが3の画 素集合に関する提案手法の原理

れらの画素集合はほぼ,各直線上の水深0に対応する点 を含む平面(3次元の場合の超平面)上に分布する.ま た,これらの画素集合の重心を原点とする3本の主成分 軸を設けると,この平面はほぼ,第1・第2主成分軸を含 む.図-2の場合と同様に,水深推定対象である浅い領域 の画素の,上記の第3主成分軸上の座標は,底質に依存 せず,水深のみに線形に依存し,相対水深を与える.

(3) 処理フロー

提案手法による実際の処理手順を以下に示す.

- 画像から、汀線付近の水深が0に近い画素集合、それ らを含む浅い領域の画素集合を抽出する。本研究では この処理を、近赤外バンドに適当な閾値を設けること により行うが、他の方法(例えば、鈴木ら、2002)を 用いてもよい。
- 2. 画像内に,外洋部など,水深が無限大とみなせるよう な深い領域を特定する.この深い領域の画素集合を用 いて,2.(2)に述べた方法で,汀線付近を含む浅い領 域の画素集合の,X₁,…,X_Mを求める.
- 3. 汀線付近の画素集合のX₁,…,X_Mに関する第M主成分の 固有ベクトルnを求める. X'₀には重心の値を代入して, 浅い領域の画素集合に関する相対水深(X'-X'₀)nを計算 する.

4. 実水域における精度検証

(1) 対象水域と使用データ

a) 対象水域

検証を行った水域は,沖縄県石垣市東海岸の玉取崎付 近である. 底質として,砂礫,岩盤,サンゴが分布する.

b) 衛星画像

図-4に示した、2007年7月2日撮影,空間分解能2.4m のQuickBird画像(標準画像;マルチスペクトル)を用 いた.この画像は可視域に3バンド(M=3),近赤外域に1 バンドを有している.今回の検証では、各バンドに関す る分光放射輝度 $L(\lambda)$ を、画素の輝度値で代用した.両者 は比例するため、これはLyzengaの方法には影響せず、 固有ベクトルの計算のみに影響する.

汀線付近・浅い領域の画素集合の抽出は,近赤外バンドの輝度値に関して,それぞれ250,400 (バンド平均の分 光放射輝度に換算してそれぞれ33.8,54.1W/m²/sr/μm)を 閾値として,陸域と水域,汀線付近と他の浅い領域を判 別することにより行った.また,図-4に示した赤枠内 (外洋部)を,深い領域として用いた.

c)水深実測値

2006年7月29日に, RD Instruments社のWorkhorse Sentinel ADCPおよびDGPSをボートに搭載し, 図-4に太 線で示した測深コースに沿って水深を計測した. ADCP の4本のビームによる計測値は, 傾斜に関する補正を行 い,気象庁の潮汐観測資料から内挿した計測時刻の潮位 に基づいて,TP基準に換算した.次に,4ビームによる 計測値の変動係数(標本標準偏差と平均の比)が0.05未 満である,625の測深地点を抽出し,4ビームの平均計測 値を求めた.その後,QuickBird画像の中で抽出した測深 地点を含む539画素について,画素ごとに平均計測値の 平均を求め,画素の水深実測値とした.ただし,X₃の値 が目立って小さい(平均より標準偏差の5倍以上小さい) 3画素は,異常値とみなして解析対象から外した.

(2) 結果

まず,汀線付近の画素集合のX₁,…,X_Mに関して,第1,2 主成分による累積寄与率(説明された分散の割合)は 0.9919に達し,汀線付近の画素集合が超平面上に分布す るという3.で述べた理論がよく成立していることが確認 された.

次に図-5に,水深が実測された計536画素について, 提案手法による推定値の,実測値に対する散布図を示す. 図中には,推定値を実測値で説明する回帰直線を2種類

付記したが,原点を通るように切片を0とした回帰直線 と通常の単回帰直線がほぼ一致していること,および決 定係数R²が0.770と比較的高いことから,推定値が実測 値と良好な比例関係にあることがわかる.

さらに図-6に、提案手法とLyzengaの方法について、 予測精度の指標として、推定値と実測値の相関係数を比 較する.Lyzengaの方法に関しては、様々な数のトレー ニングデータ(水深を既知とみなす画素)を用いた場合 について、次のような交差検証法によって評価した相関 係数を示している.

- 水深を実測した536 画素のうち、単純無作為抽出した
 一部の画素をトレーニングデータとして利用し、残りの画素の水深を推定した後、推定値と実測値の相関係 数を求める。
- この試行を、トレーニングデータの数を4(回帰係数の数であり、Lyzengaの方法が実行可能な最小値)から25まで1ずつ変化させながら、1000回ずつ反復し、相関係数の1000回平均を求める.

図-6からわかるように、提案手法はトレーニングデー タを用いないにも関わらず、その推定精度は、多くのト レーニングデータを用いたときのLyzengaの方法に対し ても遜色なく、トレーニングデータの数が15未満のとき のLyzengaの方法よりも優れていた.この結果から、提 案手法が有効な相対水深分布推定法であることがわかる.

5. まとめ

浅水域の相対水深の空間分布を、単一の衛星画像のみ を用いて推定する方法を開発した.提案手法は、 Lyzengaの方法と同様の推定式を用いるが、係数の決定 (推定式のトレーニング)のために水深実測値に頼らず、 代わりに汀線付近の画素集合を活用する.それにも関わ らず提案手法は、実水域における検証実験の結果、トレ ーニングデータが15未満の場合のLyzengaの方法よりも 優れた推定精度を与えた.提案手法は、トレーニングデ ータが乏しい水域の水深分布推定のために、有望な方法 である.

ただし提案手法においては, 汀線付近の画素集合の抽 出方法が, 推定式や推定精度に大きく影響する可能性が ある. 今後, 抽出方法の開発・検討を進めたい.

参考文献

- 泉宮尊司・國田知基・鈴木健太郎・石橋邦彦・泉 正寿・ 永松 宏(2000):衛星リモートセンシングによる水中消 散係数の変動を考慮した沿岸域の水深の推定,海岸工学論 文集,Vol.47,pp.1351-1355.
- 神野有生・鯉渕幸生・竹内 渉・磯部雅彦 (2009):光学理論 モデルのセミパラメトリック表現に基づく浅水域の汎用 水深分布予測法,日本リモートセンシング学会 誌,Vol.29,pp.459-470.
- 鈴木健太郎・泉宮尊司・石橋邦彦(2002):衛星リモートセン シングによる砂浜海岸の高精度水深推定法とその適用性 に関する研究,海岸工学論文集,Vol.49,pp.1521-1525.
- 灘岡和夫・田村英寿(1993):沖縄赤土流出問題に関する汎用 衛星モニタリングシステム構築の試み,海岸工学論文 集,Vol.40,pp.1106-1110.
- 二宮順一・森 信人・矢持 進(2006):高解像度画像を用い た光学理論による藻場分布推定法の開発,海岸工学論文 集,Vol.53,pp.1426-1430.
- Paringit,E.C. · 灘岡和夫 · 中山哲嚴 (2004) : Ikonos衛星画像へ の生物物理学的分光反射モデルの適用による大型水性植 物と水深分布の同時推定,海岸工学論文集,Vol.51,pp.1401-1404.
- Adler-Golden,S.M.,P.K.Acharya,A.Berk,M.W.Matthew and D.Gorodetzky (2005) : Remote bathymetry of the littoral zone from AVIRIS,LASH,and QuickBird imagery,IEEE Trans.Geosci.Remote Sens.,Vol.43,pp.337-347.
- Bierwirth, P.N., T.J.LEE and R.V.BURNE (1993) : Shallow sea-floor reflectance and water depth derivced by unmixing multispectral imagery. Photogrammetric Eng. Remote Sens., Vol. 59, pp. 331-338.
- Kanno,A.,Y.Koibuchi and M.Isobe (2010) : Statistical Combination of Spatial Interpolation and Multispectral Remote Sensing for Shallow Water Bathymetry,IEEE Geoscience and Remote Sensing Letters,accepted.
- Lyzenga,D.R.(1978): Passive remote sensing techniques for mapping water depth and bottom features, Applied Optics, Vol.17, pp.379-383.
- Lyzenga, D.R., N.P.Malinas and F.J.Tanis (2006) : Multispectral bathymetry using a simple physically based algorithm, IEEE Trans.Geosci.Remote Sens., Vol.44, pp.2251-2259.
- Philpot,W.D.(1989): Bathymetric mapping with passive multispectral imagery, Applied Optics, Vol.28, pp. 1569-1578.
- Stumpf,R.P.,K.Holderied and M.Sinclair (2003): Determination of water depth with high-resolution satellite imagery over variable bottom types,Limnol.Oceanogr.,Vol.48,pp.547-556.