数値解析・GIS分析・衛星画像解析の統合による津波被災地探索技術 - 2009年サモア諸島沖地震津波災害における実践と検証-

Detecting Tsunami Affected Area by Integrating Numerical Model, GIS Analysis and Remote Sensing - Implementation to the 2009 Tsunami Disaster in American Samoa -

越村俊 $-^{1}$ ·郷右近英臣²·行谷佑 $-^{3}$ ·西村裕 $-^{4}$ 中村有吾⁵·Gerard Fryer⁶·Akapo Akapo⁷·Laura Kong⁸

Shunichi KOSHIMURA, Hideomi GOKON, Yuichi NAMEGAYA, Yuichi NISHIMURA Yugo NAKAMURA, Gerard FRYER, Akapo AKAPO and Laura KONG

The authors propose a method to search and detect the impact of tsunami disaster by integrating numerical modeling, remote sensing and GIS technologies. This method consists of regional hazard/damage mapping, identifying exposed population, and satellite image interpretation in terms of structural damage. The method is implemented to the recent tsunami event, the 2009 tsunami in American Samoa, to identify the structural damage by the tsunami.

1. はじめに

巨大災害の発生時には、交通・通信インフラの途絶や 被災地の孤立化により、全ての災害救援活動が難航する. 特に激甚な被害を受けた地域は、救援要請さえ出せずに 取り残されることが多い.この問題を解決するためには、 現地からの要請を待たずに外部から能動的に被災地を探 索し、災害救援活動を展開すべき地域をできるだけ早く 決定する必要がある.

本研究では、津波災害発生直後に実施する津波数値解 析と、人口統計データを用いたGIS分析、リモートセン シング技術を統合して津波被災地を探索し、被害状況を 定量的かつ能動的に把握する手法を提案する.また、 2009年9月29日に発生したサモア諸島沖地震津波災害に おいて本手法を適用して検証し、手法の妥当性や課題を 整理する.

具体的にはまず, 地震発生後即時的に得られる地震情報のみ(震源位置, マグニチュード, 断層メカニズム, 余震分布)を用いて非線形長波式による広域津波計算を 実施する.海底地形データは,全世界をカバーする

1	正会員	博(工)	東北大学准教授大学院工学研究科
2	学生会員		東北大学大学院工学研究科
3	正会員	博(工)	產業技術総合研究所研究員活断層·地震
			研究センター
4		博(理)	北海道大学助教大学院理学研究院附属地
			震火山観測センター
5		博(地球)	環境科学)
			北海道大学理学研究院研究員大学院理学
			研究院附属地震火山観測センター
6		Ph.D.	NOAA, Pacic Tsunami Warning Center
7			NOAA, National Weather Service Pago Pago
8		Ph.D.	International Tsunami Information Center

図-1 2009年サモア諸島沖地震津波の計算領域および津波波源 モデル(実線:隆起, 点線:沈下, コンター間隔:0.2m)

GEBCO 30秒メッシュのデータ(IOC, IHO and BODC, 2003)を使用する.次に,数値解析から得られた津波高 予測値と世界の人口統計(LandScan[™]; Dobsonら, 2000) をGISで統合表示して,津波に曝されている人口(津波 曝露人口)を算出し,沿岸津波高との関連で被災地を探 索する.ここで津波被災地として探索する基準は,既往 の津波災害事例における津波高と建物被害率,死亡率の 関係を調査して検討する.

上記の基準により想定被災地をリストアップし、人工 衛星の観測軌道,観測状況,過去の撮影アーカイブの有 無をチェックする.被災直後に緊急観測を行った場合に は撮影画像を入手し,津波浸水域の把握(光学画像の場 合)や家屋被害の判読を行って被害把握を行う.

最後に、2009年サモア諸島地震津波の被災地における

図-2 2009年サモア諸島沖地震津波における米領サモア (Tutuila島)の予測津波高と津波曝露人口表示による津波被災地の探索結果. 沿岸部人口が多く(200人以上),津波高が高い(3.5m以上)3集落(Pago Pago, Leone, Poloa)が想定被災地として推定された.

表-1	2009年サモ	ア言	皆島江	「地震	の断	層パ	ラ	メー	タ
-----	---------	----	-----	-----	----	----	---	----	---

断層長さ×幅 [km]	150km×75km
走向,傾斜角,滑り角[゜]	(124, 46, -120)
滑り量 [m]	3.6
地震モーメント「Nm】	1.2×10^{21}

現地調査(建物被害調査)結果に基づき,本手法の検証 を行う.

2.2009年サモア諸島沖地震津波と被災地の探索

2009年9月30日(現地時間),米領サモア南西190km の地点でM8.3(西経:172.034°,南緯:15.509°)の地震 が発生し、それに伴い発生した津波が、独立国サモアお よび米領サモアに来襲した.ここでは、津波数値解析と 人口統計との統合分析により津波被災地を探索する(越 村,2007).図-1に津波の計算領域と津波計算の初期条 件(津波発生時初期水位分布)を示す.採用した断層パ ラメータは表-1の通りである.パラメータはU.S. Geological SurveyのCMT解(USGS, 2009)を参考に決 定した.

図-2に米領サモアにおける予測津波高と人口統計を示 す.沿岸部における津波被災規模は、単に来襲する津波 の高さだけでは規定できない.津波被害の全体像を把握 することは、すなわち、津波高さの推計・把握に加え、 その津波に曝される社会的条件(脆弱性)を考慮するこ とが津波被災地推定の要件となる.ここでは、世界の人 口統計LandScan[™]を利用して津波高と人口を統合表示 し、被災地を探索した.既往の研究(たとえば越村ら、 2009;河田、1997)では、沿岸の津波高が3-4mを超え ると家屋破壊率および死亡率が急増することが知られて いる.ここでは予想津波高3.5mおよび人口200人という 基準で被災地を探索した結果, Pago Pago, Leone, Poloa の3地域が被災地として想定された.

3. 人工衛星画像による津波浸水域と家屋被害の 把握

地震発生直後からの衛星観測の状況を調査し,被災地 の把握に利用できる衛星画像をリストアップした.その 結果,地震発生から4時間後にDigitalGlobe社の QuickBird衛星が米領サモアPago Pago湾の観測を行った ことが分かった.さらにQuickBirdは地震発生の5日前の 撮影にも成功しており,これらの画像をセットで取得し て被害把握を行う.QuickBird衛星は2001年に打ち上げ られた商業観測衛星で,可視域3バンドと近赤外域1バ ンドのセンサーからなる.QuickBird衛星および光学セン サの諸元を表-2に示す.

まず,NDVI(正規化植生指標,Normalized Difference Vegetation Index)により浸水域を推定し,被害判読を実 施する領域を決定する.NDVIは各バンドの画素値を用 いて次式で算出される.

$$NDVI = \frac{NIR - R}{NIR + R} \quad (-1 \le NDVI \le 1) \dots \dots \dots \dots (1)$$

NIR, Rはそれぞれ近赤外域バンド,可視域赤バンドの 反射率(または放射輝度)に対応し,QuickBird画像にお いてはそれぞれバンド4,バンド3が相当する.通常, NDVIは植生の活性度を表す指標として利用される.

津波発生からある程度日数が経過した後の衛星画像を 用いる場合には、塩水の遡上により枯死した植生等を NDVIから抽出することで浸水域を把握することは可能

図-3 Pago Pagoにおける津波前後のNDVIの分布と抽出した浸水域(実線:NDVIから求めた浸水ライン, 点線:現地調査で得られた瓦礫の漂着ライン)

表-2 QuickBird 衛星および光学センサの諸元

回帰日数 [日]	1-3.5
軌道周回時間 [分]	93.5
分解能 [m]	パンクロ0.6, マルチ2.4
観測波長 [nm]	青 (B):450-520
	緑 (G):520-600
	赤 (R): 630-690
	近赤外(NIR):760-900

である. たとえばKouchi · Yamazaki (2007) は、津波浸 水域を抽出する際の津波前後のNDVIの閾値を0.46とし ている.本研究で利用した画像は地震発生から4時間後 であり、津波前の画像のCloud Coverが大きいため植生の 活性度の変化に着目した浸水域把握は不可能である. こ こでは津波後の画像のみを用いて、NDVIが水に対して 負の値をとるという特性(水は近赤外を強く吸収すると いう特性)に着目する. Pago Pago湾内の水域のサンプル データを取得し、 画素の輝度値に関するヒストグラムを 作成した上で、浸水域の閾値をNDVI=0.098として浸水 ラインを求めた.その結果を図-3に示す.図中の実線は NDVIの閾値の適用によって求めた浸水ライン、点線は 著者らが実施した現地調査での瓦礫の漂着ラインであ る.NDVIによる浸水ラインは瓦礫のラインより内陸に あり、NDVIに着目した浸水域の把握がある程度可能で あることが分かる.しかし、現地調査で得た漂流物漂着 ラインが浸水ラインと等価かどうかも含め、浸水域の抽 出精度の評価にはさらなる検討が必要であることが分か った.

次に,浸水域内の家屋127棟を対象に,津波前後の衛 星画像の比較により被害判読を実施した.Miuraら (2006)を参考に,図-4を例として被害を表-3の通り5段 階に分類した.なお,表には判読棟数も付記する.

図-4 QuickBird衛星画像の目視判読による建物被害分類の例 (左が津波前,右が津波後)

4. 衛星画像による建物被害判読精度の評価

衛星画像を利用した建物被害判読は,同一の判定基準 による広域な被害把握が可能である反面,直上からの情 報(主に屋根の形状)のみに頼らざるを得ないため,判 読精度に限界がある.ここでは,衛星画像を用いた建物 被害判読の精度評価を行う.

図-5および表-4は,著者らがPago Pagoにおいて実施し た現地調査で得られた建物被害調査結果である.これを 真値(Ground Truth)として衛星画像判読結果を評価す る.被害評価結果の比較は表-5の通りである.なお,現

表-3 衛星画像による建物被害判定基準と判読結果

被害分類	基準	棟数
Washed away	建材を含め全て流失	34
Collapsed	構造破壊,建材は残存	7
Major	屋根の形状変化,屋根は残存	14
Survived	明確な変化無し	54
Unknown	不明	18

地調査での被害判定においてModerate, Only flooded, No damageの3クラスは衛星画像判読のSurvivedに相当す るとして比較を行った.以下では衛星画像の判読で生じ た誤差要因について考察する.

表-5の最下部に,現地調査の結果を真とした衛星画像 判読による被害建物棟数の正解率を示す.正解率はそれ ぞれ,Survived (衛星画像からは無被害と判読,現地で はModerate,Only flooded,No damage)のクラスは 100%,Major:0%,Collapsed:14.2%,Washed away: 100%を得た.特にMajorからCollapsedに関しては,衛 星画像のみの建物被害判読では誤分類が生じることが分 かった.

衛星画像から判読した建物被害が現地調査における評 価結果よりも過大評価となる誤分類をPositive Error (PE) とし、その逆をNegative Error (NE) として考える. 衛 星画像からのMajor判定においてPE(10棟)が生じるの は、主として、ひさしのような建物の付属物のみが破壊 された時に建物本体に構造的破壊が生じたと誤認識する 場合である.一方,NE(4棟)が生じるのは,衛星画像 では大きな形状変化を確認できないものの、側面からは 壊滅的な被害を受けていることが原因であることが分か った. また, Collapsedにおいて生ずるNE(5棟)は,流 失した建物の白い基礎の上に泥が残っているために,大 規模な破壊を受けた建物がまだその場所に留まっている と誤認識した場合である.結局,これらの誤分類の要因 の多くが建物の構造や現地の条件によるものであり、衛 星画像のみから判読することは難しい. その一方, SurvivedとWashed awayの正解率に関しては衛星画像の みの解析により良好な結果を得られる事が分かった.

5. 結論

津波数値解析・人口統計データのGIS分析・衛星画像 解析を統合して津波被災地を探索する技術を提案し, 2009年サモア諸島沖地震津波の解析,現地調査を通じて その有効性を実証した.以下に主要な結論を列挙する.

既往の津波災害事例を参考にして、津波被災地の探索 基準を津波高3.5m、集落人口200人以上と設定し、米領 サモアTutuila島における津波被災地の探索を行った. そ の結果, Pago Pago, Leone, Poloaの3集落が被災地とな り得ることが判明した. また, Pago PagoとLeoneでは

表-4 現地調査による建物被害判定基準と判定結果

被害分類	基準	棟数
Washed away	建材を含め全て流失	35
Collapsed	構造全体が破壊	4
Major	構造の一部が破壊	0
Moderate	壁や柱の一部が破壊	5
Only flooded	窓ガラスが割れる程度	61
No damage	浸水無し	12
Unknown	不明	10

100棟以上の建物が流失・大破, Poloaはほとんど全ての 家屋が流失して集落が壊滅するなどの被害を受けていた ことが分かった.

地震発生から4時間後のPago Pagoで撮影された QuickBird画像(分解能60cm)を取得し,NDVI(正規化 植生指標,Normalized Difference Vegetation Index)によ り浸水域を推定した.また,浸水域内の家屋を対象に, 目視による家屋被害の判読を行った.浸水域の把握精度 には課題が残るが,地震発生直後に被災地を探索し,そ の結果に対応して緊急衛星観測が実現すれば,迅速な被 災地の把握が可能であることが実証できた.

衛星画像による建物被害判読の精度を現地調査により 検証した結果,無被害(Survived)と流失(Washed away) に関する精度(正解率)は100%であるが,大破・倒壊 (Major, Collapsed)という被害に関しては誤分類が生じ てしまうことが分かった.その要因は,ひさしのような 建物の付属物のみが破壊された時に建物本体に構造的破 壊が生じたと誤認識する場合の過大評価(Positive Error) と,画像のみから建物の形状変化を確認できないものの 実際には壁面が壊滅的な被害を受けている場合の過小評 価(Negative Error)が存在することが分かった.

謝辞:本研究の一部は平成20年度産業技術研究助成事業 (代表:越村俊一,プロジェクトID:08E52010a)およ びJST-JICA地球規模課題対応国際科学技術協力プロジェ クト(代表:佐竹健治)の補助を受けて実施された.こ こに記して謝意を表する.

参考文献

- 河田惠昭 (1997):大規模地震災害による人的被害の予測,自 然災害科学, Vol.16, No.1, pp. 3-13.
- 越村俊一 (2007): 巨大津波災害の広域被害評価, 第四紀研究, Vol.46, pp. 499-508.
- 越村俊一・行谷佑一・柳澤英明 (2009):津波被害関数の構築, 土木学会論文集B, Vol.65, No.4, pp. 320-331.
- 行谷佑一・越村俊一・西村裕一・中村有吾・G. Fryer・A. Akapo・L. Kong (2010): 2009年サモア諸島沖地震津波 の米領サモアにおける津波高さおよび被害の調査,土木 学会論文集B2(海岸工学), Vol. 65, pp. 1366-1370.
- Dobson, J. E., E. A. Bright, P. R. Coleman, R.C. Durfee and B. A. Worley (2000) : LandScan: A Global Population Data-base for Estimating Populations at Risk, Photogrammetric Engineering

図-5 米領サモアTutuila島における津波前後のQuickBird画像とPago Pago における家屋被害把握(現地調査)の結果

		衛星画像判読結果						
		Survived	Major	Collapsed	Washed away	Unknown	計	
	No damage	8	1	0	0	3	12	
	Only fooded	40	7	1	0	13	61	
現	Moderate	3	2	0	0	0	5	
地調査結果	Major	0	0	0	0	0	0	
	Collapsed	0	3	1	0	0	4	
	Washed away	0	1	5	29	0	35	
	Unknown	3	0	0	5	2	10	
	<u>言</u>]	54	14	7	34	18	127	
	正解率(%)	100	0	14.3	100			

表-5 衛星画像による建物被害判読とGroundTruthデータとの比較

& Remote Sensing, Vol. 66, No. 7, pp. 849-857.

- IOC, IHO and BODC (2003) : Centenary Edition of the GEBCO Digital Atlas, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the General Bathymetric Chart of the Oceans, British Oceanographic Data Centre, Liverpool, U.K.
- Koshimura, S., Y. Nishimura, Y. Nakamura, Y. Namegaya, G. J. Fryer, A. Akapo, L. Kong and D. Vargo (2009) : Field survey of the 2009 tsunami in American Samoa, Eos Trans. AGU, 90 (52), Fall Meet. Suppl., Abstract U23F-07.
- Kouchi, K. and F. Yamazaki (2007) : Characteristics of Tsunami-Affected Areas in Moderate-Resolution Satellite Images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 6, pp.1650-1657.
- Miura, H., A. Wijeyewickrema, and S. Inoue (2006) : Evaluation of tsunami damage in the eastern part of Sri Lanka due to the 2004 Sumatra earthquake using remote sensing technique, Proc. 8th National Conference on Earthquake Engineering, Paper No.8, NCEE-856.
- U.S. Geological Survey (USGS), Earthquake Hazard Program, http://earthquake.usgs.gov/