粒子法による護岸背後地盤空洞形成過程の数値解析

Numerical Analysis on Cave-Formation Process behind Seawall by Particle Method

後藤仁志¹·五十里洋行²·駒口友章³·三島豊秋⁴·吉年英文⁵

Hitoshi GOTOH, Hiroyuki IKARI, Tomoaki KOMAGUCHI Toyoaki MISHIMA and Hidefumi YODOSHI

A suction of backfill sand behind a seawall causes damages of seawall, such as local subsidence of seawall or cave-in of backfill sand. Some field observations show that caves were formed due to suction through a corroded hole found in a sheet pile under the seawall. Therefore, in this study, a numerical simulation on such a cave-formation process is carried out by a particle method. The simulation consists of two stages: The one is a simulation of a suction process of sand under the seawall, and the other is an erosion process of backfill sand. The cave reproduced by the simulation showed good agreement with the observed one.

1. はじめに

護岸背後の埋立土砂が吸い出しを受け、局所的な地盤 沈下や陥没が発生した被害例がこれまでにも多く報告さ れており、それに関する研究も進められている(例えば、 重村ら、2002、前野ら、2002、中村ら、2006、斎藤ら、 2009).本稿で対象とした現地護岸(図-1)では、護岸近 傍の舗装部の直下に空洞が形成されており、空洞の規模 によっては図中の写真にあるような陥没が発生し、人や 車両の通行に危険を伴う.空洞の周辺についてさらに調 査を進めたところ、護岸下の矢板に縦10cm×横3cm程度 の腐食孔が発見された.このことから、腐食孔から護岸 下の土砂が徐々に吸い出され、護岸背後の土砂が崩落し、 天端舗装部下に空洞が形成されたと推定される.

この種の現象に対して数値的に検討を行うためには, 地盤内の応力解析が必要であり,既往の研究においては, 主に有限要素法による解析が行われてきた.前野ら (2002)は地盤内間隙水圧分布から,中村ら(2006)は 地盤の体積ひずみからそれぞれ土砂の吸出しを予測して いる.しかし,これらの研究においては,土砂の吸い出 しに伴う地盤変形についてまでは解析の対象とされてい ない.これは,有限要素法では微小変形のみしか扱えず, 空洞の形成に至るまでの進行性破壊現象を再現すること が非常に困難であるからである.そこで本稿では,土塊 の分離や大変形に柔軟に対応できる粒子法によって再現 計算を実施し,本現象の解析への適用性を検討する.

1 2 3 4 5	正会員 正会員 正会員 正会員 学生会員	博(工) 博(工) 博(工)	京都大学教授工学研究科社会基盤工学専攻 京都大学助教工学研究科社会基盤工学専攻 (株) 碧浪技術研究所 代表取締役 (株) 碧浪技術研究所 技術部長 京都大学工学研究科社会基盤工学専攻
-----------------------	----------------------------------	----------------------	--

図-1 現地護岸断面および背後地盤陥没写真

2. 数値解析の概要

(1) 流体解析

流体解析には、MPS法(Koshizuka and Oka, 1996)を
 用いる.ただし、後述するように、侵食モデルを併用するので、固液二相流型MPS法(後藤ら, 2002)を用いる。
 各相の運動方程式は、Navier-Stokes式

$$\rho_{t} \frac{D\boldsymbol{u}_{t}}{Dt} = -\nabla p_{t} + \mu_{t} \nabla^{2} \boldsymbol{u}_{t} + \boldsymbol{f}_{is} + \rho_{t} \boldsymbol{g}$$

$$\rho_{s} \frac{D\boldsymbol{u}_{s}}{Dt} = -\nabla p_{s} + \mu_{s} \nabla^{2} \boldsymbol{u}_{s} - \boldsymbol{f}_{is} + \rho_{s} \boldsymbol{g}$$
(1)

である.ここに、 u_m :流速ベクトル、 p_m : 圧力、 ρ_m :密度、g:重力加速度ベクトル、 μ_m :粘性係数、 f_{ls} :固相・液相間相互作用力ベクトルである.添字m=l,sは、液相および固相を表す.MPS法では、基礎式の各項は、粒子間相互作用モデルを通じて離散化され、圧力項における gradient および粘性項における Laplacian は以下のように記述される.

$$\langle \nabla p \rangle_i = \frac{D_0}{n_0} \sum_{j \neq i} \left\{ \frac{p_j - p_i}{|\mathbf{r}_{ij}|^2} (\mathbf{r}_{ij}) w(|\mathbf{r}_{ij}|) \right\} \quad \dots \dots (2)$$

ここに、 D_0 :次元数、 n_0 :基準粒子数密度、 r_i :粒子iの位置 ベクトル、 λ :モデル定数、 $\omega(r)$:重み関数である.

(2) 地盤弾塑性解析

a) 運動方程式

本稿では、土粒子の運動追跡には、五十里ら(2009) の弾塑性モデルを適用する.土粒子の運動方程式は、

と表される.ここに、 δ :土粒子間の接続状態に関する デルタ関数, f_{colp} :弾性接続状態にない土粒子間が接触 したときに生じる衝突力ベクトル、 σ :応力テンソル、 ε' :弾性ひずみテンソル、tr(ε'):体積ひずみ、I:単位 テンソル、 κ, μ^{e} :ラメの定数、E:弾性定数、v:ポア ソン比である.土粒子は、初期状態においては連続体と 見なし、影響範囲内の他の土粒子と弾塑性モデルによる 粒子間相互作用計算を行う(δ =1).ただし、粒子間の接 続が切断された場合、あるいは元々影響範囲内にない土 粒子間が新たに接触した場合には、個別要素法と同様の バネ-ダッシュポットモデルによって反発力 f_{colp} を計算す る.初期に接続状態にあったすべての粒子との接続が切 断されて完全に孤立する(δ =0)と、DEM-MPS法(後藤 ら、2003)と同様の扱いとなる.

b)弾塑性モデル

地盤は,降伏条件を満足するまでは,弾性体として挙 動する.本稿で用いた弾性体モデルは朱ら(2005)と同 様のものである.式(7)の右辺第1項の体積ひずみと右 辺第2項は,以下のように書ける.

$$\begin{aligned} \operatorname{tr}\left(\boldsymbol{\varepsilon}^{\epsilon}\right)_{i} &= \frac{D_{0}}{n_{0}} \sum_{j\neq i}^{N_{out}} \frac{\mathbf{s}_{ij}}{|\mathbf{r}^{0}_{ij}|} \frac{\mathbf{r}_{ij}}{|\mathbf{r}_{ij}|} \frac{\mathbf{r}_{ij}}{|\mathbf{r}_{ij}|} \left| \mathbf{w}(|\mathbf{r}^{0}_{ij}|) \right| & \dots (9) \\ 2\mu^{\epsilon} \boldsymbol{\varepsilon}^{\epsilon}_{i} &= 2\mu^{\epsilon} \langle \nabla^{2} \mathbf{s}^{\epsilon} \rangle_{i} = 2\mu^{\epsilon} \frac{2D_{0}}{n_{0}} \sum_{j\neq i}^{N_{out}} \frac{\mathbf{s}^{\epsilon}_{ij}}{|\mathbf{r}^{0}_{ij}|^{2}} w(|\mathbf{r}^{0}_{ij}|) \quad \dots (10) \\ \mathbf{r}^{0}_{ij} &= \mathbf{r}^{0}_{j} - \mathbf{r}^{0}_{i} \quad \dots (11) \end{aligned}$$

ここに, s_{ij} : 粒子i, j間の相対変位ベクトル, r_i^0 : 粒子iの初期位置ベクトル, N_{cont} : 接続粒子数である.

塑性計算は,一般的な地盤弾塑性解析と同様に増分形 で記述し,ひずみ増分*d*εは,弾性ひずみ増分*d*ε と塑性 ひずみ増分*d*ε⁰の和で表されるとする.

本弾塑性モデルでは,地盤を弾完全塑性体と仮定するの で,塑性ひずみ増分は,以下のように与えられる.

$$\{d\boldsymbol{\varepsilon}^{\boldsymbol{\rho}}\} = dA\{\frac{\partial \boldsymbol{\psi}}{\partial \boldsymbol{\sigma}}\} \qquad (13)$$
$$dA = \frac{\{\frac{\partial f_{\boldsymbol{\sigma}}}{\partial \boldsymbol{\sigma}}\}^{T}[D^{\boldsymbol{\sigma}}]\{d\boldsymbol{\varepsilon}\}}{\{\frac{\partial f_{\boldsymbol{\sigma}}}{\partial \boldsymbol{\sigma}}\}^{T}[D^{\boldsymbol{\sigma}}]\{\frac{\partial \boldsymbol{\psi}}{\partial \boldsymbol{\sigma}}\}} \qquad (14)$$

ここに, f_y :降伏関数, ψ :塑性ポテンシャル関数であり,本稿ではそれぞれにDrucker-Prager式を適用した.

本弾塑性モデルでは、土塊が分裂するような大変形に 対応するために、初期に連続体を形成していた粒子間の 接続を計算途中で切断する.これに関しては、五十里ら と同様に塑性ひずみの第2不変量が一定値を超えること を切断の条件とした.

c) 侵食モデル

本稿で適用する侵食モデルによる侵食は、固定壁粒子 としてのフラッグを持った粒子を移動粒子のフラッグに 変更することによって行われる.本稿で用いるフラッグ は以下の4種類である.

なお,ここでの土砂粒子は弾塑性粒子ではなく,固液二 相流計算で扱う移動固相粒子である.

フラッグの変更は,近傍流速(斜面に平行な成分のみ) に基づいて行われる.近傍流速は,

と定義される(θ :斜面傾斜角, $r_{ev}=2.1d_0(d_0:$ 粒子径)).

固定壁粒子のpick-upは,流砂量式に基づいて判定する. まず,図-2のような砂層表面を想定し,仮想的な微小砂 粒子(粒径*d_{sp}*)が流送されると考える(ただし,仮想微 小砂粒子は,移動を追跡しない).このとき,仮想微小 砂粒子の移動限界流速*u_{bc}*は,

$$u_{bc} = \sqrt{\frac{2A_3\left(\mu_f \cos\theta - \sin\theta\right)\left(\rho_{sp}/\rho_l - 1\right)gd_{sp}}{\varepsilon_0\left(C_D + \mu_f C_L\right)A_2}} \quad \cdots (18)$$

と与えられる(ここで、 A_3 :砂粒子の3次元形状係数, μ_f :静止摩擦係数(=1.8), ρ_{sp} :仮想微小砂粒子の密度 (=2.65×10³ kg/m³), ϵ_0 :遮蔽係数(=0.4), C_D :抗力係数 (=0.4), C_L :揚力係数(=0.4), A_2 :砂粒子の2次元形状 係数).また,底面近傍の流速分布が粗面対数則で与えら れるとすれば,仮想微小砂粒子の限界掃流力 τ_{sc} は,

$$\tau_{*c} = \frac{u_{*c}^2}{(\rho_{\phi}/\rho_l - 1)gd_{\phi}} \qquad (19)$$
$$u_{*c} = u_{bc} / \left\{ \frac{1}{\kappa} \ln\left(\frac{30.1y_b}{k_s}\right) \right\} \qquad (20)$$

と書ける(ここで、 y_b :河床面からの距離、 κ :カルマ ン定数(=0.41)、 k_s :粗度高さ(= d_{sp})).

一方,式(16)から得た底面近傍流速は,格子状に配 列された粒子配置を基準として考えると,固定壁粒子中 心位置から底面近傍流速の定義点までの距離r,bは,

となり,底面近傍流速は,砂層表面から r_b -0.5 d_0+d_{sp} 離れ た地点での流速であると言える.したがって,仮想微小 砂粒子に作用する流速 u_{sp} ,摩擦速度 u_* および掃流力 τ_* は, 粗面対数則を用いて,

$$u_{sp} = \frac{u_{*}}{\kappa} \ln\left(\frac{30.1 \times 0.5d_{sp}}{k_{s}}\right) \qquad (22)$$
$$u_{*} = u_{b} / \left\{\frac{1}{\kappa} \ln\left(\frac{30.1(r_{b} - 0.5d_{b} + d_{sp})}{k_{s}}\right)\right\} \qquad (23)$$

$$\tau_* = u_*^2 / (\rho_{sp} / \rho_l - 1) g d_{sp}$$
(24)

と推定できる.

以上より,仮想微小砂粒子に作用する流速が移動限界 流速を超えたとき,固定壁粒子の占める長さ d_0 (=粒子 径)の範囲からpick-upされる土砂fluxは,pick-up rate p_s を用いて,

と記述されるので(ここで, α_{accel} (=30.0) は,計算時間 短縮のために導入したパラメータである.本プログラム では,実現象の進行速度に合わせて解析を行うことも可 能であるが,膨大な計算時間を必要とし,現実的ではな いので,侵食速度を大きく設定した),pick-up rateとし て,Nakagawa · Tsujimoto (1980)の近似式

$$p_{s} = F_{0} \tau_{*} \left(1 - k_{2} \frac{\tau_{*c}}{\tau_{*}} \right)^{m} / \sqrt{\frac{d_{s\phi}}{(\rho_{s\phi}/\rho_{l} - 1)g}} \quad \cdots (26)$$

に (F_0 =0.03, k_2 =0.7, m=3),各値を代入すれば先の土砂 flux が求められる.最終的に,先の土砂 flux の累積値が 固定壁粒子 1 個分の体積を超えたらフラッグを変更して 固定壁粒子を pick-up させる.

if $((\sum q_B \Delta t)_i \ge A_2 d_0^2)$ then $\Xi_i = 3$ (27)

なお、斜面傾斜角が限界角を越える場合には、移動限界 流速をゼロとし、また、 α_{accel} = 3.0×10^{3} とした.

3. 護岸背後地盤空洞形成過程の数値解析

(1) シミュレーションの概要

図-3に、計算領域の全体図を示す.計算は、護岸下土 砂の吸い出し計算と護岸背後地盤の崩壊計算の二段階に 分けて行う.本稿で用いた解析プログラムでは、両者を 同時に解析することも可能であるが、弾塑性計算部分は 陽解法を適用しており、多大な計算時間を要する.また、 腐食孔から土砂が吸い出される初期の段階においては、 弾塑性計算を行う必要性が必ずしも高くない.したがっ て、本稿では、簡単のために二段階に分けて計算を実施 した.まず初めに、護岸下土砂の吸い出し計算を行って 護岸下に形成される空洞の進行状況を把握し、それに基 づいて護岸背後地盤の崩壊計算を実施する.

(2) 護岸下土砂の吸い出し過程の解析

a) 計算領域·計算条件

計算領域を,図-4に示す.腐食孔を通じた地盤への浸 水については,実際には来襲波の作用によって護岸前面 の水位が変動し,それに伴って流入および流出がされる. ここで対象とする護岸においては,前面に消波ブロック が存在し,また,対象とする入射波も平常時のものを想 定するので,それほど大きな波圧が作用するとは考えら れない.そこで,本稿では造波は行わず,代わりに,計 算領域左下に設置した移動壁を周期的に上下運動させる

ことで護岸前面の水位変動のみを考慮することとした. 周期7.0 s,波高3.0 mの波を想定して,移動壁の運動周 期と移動幅を設定した.腐食孔の縦幅は,現地調査の結 果を考慮し,0.1 mとした.本計算においては,土砂粒子 は固定壁粒子と同様に扱い,弾塑性計算は行わない.す なわち,流体解析+侵食モデルによる計算である.なお, 粒子径は0.02 mとした.

b)計算結果

図-5に、計算結果の瞬間像を示す. 図中の濃色の粒子 は、侵食モデルによりpick-upされた固相粒子を示す. 腐 食孔から浸入してきた流体により、土砂粒子は徐々に侵

食される.pick-upされた粒子は,一部は空洞内に残るが, 引き波時に流体とともに護岸前面に流出するものもあ る.護岸下に形成された空洞は,腐食孔を中心として, ほぼ等幅で内部へ進行した.

(2) 護岸背後地盤の弾塑性解析

a) 計算領域·計算条件

図-6に、計算領域を示す.本計算では、流体を扱わず に、地盤弾塑性計算のみを行う.ただし、前節の計算結 果から得られた空洞の形成過程を考慮し、護岸下の土砂 粒子を腐食孔側(図面左側)から少しずつ除去していく. 厳密には、土砂粒子を除去するタイミングも前節計算結 果に合わせるべきであるが、計算負荷の問題から、土砂 粒子を除去した後、応力分布が安定して土砂粒子の移動 量が小さくなり次第すぐに次の土砂粒子の除去を行う. 本稿で用いた地盤パラメータは、 $E: 1.192 \times 10^8$ (N/m²)、 $c: 1.0 \times 10^4$ (N/m²)、 $v: 0.35, \phi: 35^\circ$ 、 $\rho_s: 1.67 \times 10^4$ (kg/m³) である.なお、粒子径は0.05 mとした.

b)計算結果

図-7に、初期せん断応力分布を示す. 護岸の脚部の隅 角部近辺において大きな応力が作用する.図-8に、計算 結果の瞬間像を示す.右図は、切断条件を満足して離散 体(DEM粒子)となった粒子を濃色で、それ以外の弾塑 性体の一部である粒子を淡色で示したものである. t₂=4.25 sでは、図-7で大きなせん断応力が作用していた 領域で破壊が発生している.護岸下の空洞がx=3.0 mま で進行する t₂=6.00 sまでは、土砂の移動は見られない.

ただし,地盤内部においては,広範囲にわたって破壊が 進行している. t₂=11.60 s以降では,徐々に土砂の下方へ の移動が見られ,地盤領域の上端x=3.0~5.0 mの範囲に空 洞が形成され始める.土砂の下方への移動によって,空 洞の深さは徐々に大きくなっていくが,幅はほぼ一定で, t₂=32.80 sには,空洞の大きさは幅約2.0 m×深さ約0.5 m ほどになった.これは現地で確認された空洞の位置およ び規模とほぼ同様である.なお,計算はこの段階で停止 したが,さらに計算を進めれば,空洞の深さは大きくな り,また,護岸の斜面上のx=1.5~3.0 mに位置する土砂も 崩落すると思われる.現地調査では,護岸下端の深さま で到達した空洞やより護岸に近い側にも空洞が確認され ているが,それらは,それぞれの場所における空洞化の 進行度合の違いによって生じたものであると,本計算結 果から推定できる.

5.おわりに

本稿では、粒子法を用いて護岸背後地盤の空洞形成過 程の再現計算を実施した.シミュレーションは、矢板腐 食孔からの流入水による土砂の吸い出し過程と地盤崩壊 過程の二段階に分けて実施した.土砂の吸い出し計算に おいては、流体の矢板腐食孔を通じた出入に伴って地盤 内の土砂が吸い出されていく過程が良好に再現され、護 岸下の空洞の進行状況が把握できた.吸い出し計算結果 を入力条件として実施した地盤弾塑性解析においては、 最終的に形成された空洞は現地で確認されたものとほぼ 同程度の規模となった.粒子法を用いれば、本計算で実 施したように計算点(粒子)の属性を計算途中で変更す ることで、物体の時間発展的な大変形を表現することが 可能である.本計算は、そのような粒子法の利点が特に 生かされた例であると言える.

参考文献

- 五十里洋行・後藤仁志・吉年英文(2009):斜面崩壊誘発型津 波の数値解析のための流体-弾塑性体ハイブリッド粒子法 の開発,土木学会論文集B2(海岸工学), Vol. B2-65, No.1, pp. 46-50.
- 後藤仁志・林 稔・酒井哲郎(2002): 固液二相流型粒子法に よる大規模土砂崩壊に伴う水面波の発生過程の数値解析, 土木学会論文集, No.719/II-61, pp. 31-45.
- 後藤仁志・林 稔・安藤 怜・鷲見 崇・酒井哲郎 (2003): 砂礫混合層を伴う混相流解析のためのDEM-MPS法マルチ スケールリンクの開発,海岸工学論文集,第50巻,pp. 26-30.
- 斎藤武久・吉岡和利(2009):ケーソン護岸連結目地内での流 体共振特性に及ぼす入射角の影響,土木学会論文集B2 (海岸工学), Vol. B2-65, No.1, pp. 926-930.
- 重村利幸 · 滝口和男 · 多田 毅 · 林建二郎 · 藤間功司 (2002):防波護岸背後からの土砂吸出しに関する基礎的 研究,海岸工学論文集,第49巻, pp.871-875.
- 宋 武燮・越塚誠一・岡 芳明 (2005): MPS法による弾性構 造体の動的解析,日本機械学会論文集 (A編),第71巻 701号, pp. 16-22.
- 中村友昭・許 東秀・水谷法美 (2006):捨石護岸背後の埋立 土砂の吸い出し機構,土木学会論文集B, Vol. 65, No.1, pp. 150-162.
- 前野詩朗・Lechoslaw G. Bierawski,藤田修司(2002):変動水 圧場における護岸目地からの裏込め土砂の流出と防止に 関する研究,海岸工学論文集,第49巻, pp. 876-880.
- Koshizuka, S. and Oka, Y. (1996) : Moving-Particle Semi-implicit Method for Fragmentation of Incompressible Fluid, *Nucl. Sci. Eng.*, Vol. 123, pp. 421-434.
- Nakagawa, H. and Tsujimoto, T. (1980) : Sand bed instability due to bed load motion, *Proc. ASCE, J. Hyd. Div.*, Vol. 106, HY12, pp. 2029-2051.