不規則波による越波の出現頻度と越波流量の変動性に関する数値実験

Numerical Experiments on Appearance Frequencies of Wave-overtopping due to Random Waves and Its Variations

山城 賢¹·吉田明徳²·清水将貴³

Masaru YAMASHIRO, Akinori YOSHIDA and Masaki SHIMIZU

Generally, it is extremely difficult to determine the exact wave-overtopping rate by random waves because of the irregularity of waves. In this study, the influence of the number of waves acting a seawall on the wave-overtopping rate was investigated by conducting a large number of computations with a numerical simulation model "CADMAS-SURF" based on VOF method. The main conclusions obtained from the results of numerical experiments are: 1) it is necessary to measure about 500 overtoppings to obtain the convergent wave-overtopping rate in a wave train. 2) However, if the appearance frequency distribution of overtopping quantity by individual waves is sufficiently expressed with an exponential distribution, the reliable wave-overtopping rate can be obtained, even if the number of overtopping is about 50 or 60 times.

1. はじめに

水理模型実験や数値計算によって不規則波による越波 を検討する場合には、ある一定の時間での平均越波量で ある越波流量が利用される.越波流量は、たとえ同一の スペクトルを有する不規則波を対象としても、入射波の 波列の違いにより大きく変動することが知られており, 合田ら(1975)は,越波流量推定図を作成した際に,推 定値に対する真値の想定範囲を示した.従って、通常、 信頼できる越波流量を得るためには、同じスペクトルで 入射波の波列を変えた複数回の実験や計算を実施し、 で きるだけ多くの波を作用させる必要がある.ある波列に おける作用波の数については、数100波程度が目安とさ れることが多いように思われるが、具体的な指針のよう なものはなく,実験や計算で得られた越波流量が妥当な ものかどうか判断することは難しい、このような越波流 量に対する作用波数の影響について、Reisら(2008)は 混成堤を対象に,入射波の波列と作用波数を変えた実験 を行い,作用波数が1,400波程度までは作用波数の増加 に伴い越波流量の変動幅が小さくなるが、それ以上作用 波数を増やしても越波流量は明確には収束しないと述べ ている.一方で、一波毎の越波量(あるいは越波流量) や短時間越波流量に関する研究も行われており、例えば、 泉宮ら(2006)は消波護岸を対象に現地観測を行い、越 波流量の確率分布が指数分布となることを示している.

1	正会員	博(工)	九州大学助教	大学院工学研究院環境都
2	学生会員	工博	市部門 九州大学准教授	大学院工学研究院環境
3	正会員	修(工)	都市部門 株式会社大林組	

本研究では、不規則波による越波を検討する際の、信 頼性の高い越波流量を得るために必要な作用波数を明ら かにすることを目的に、数値シミュレーションモデルに よる越波の数値実験を多数実施し、不規則波による越波 流量の変動性と不規則波中の個々の波による越波の出現 頻度との関連について検討した.

2. 数値実験の内容

(1) 計算条件

数値モデルには,越波の検討に実績のある数値波動水 路CADMAS-SURF Ver.4.0(財団法人沿岸開発技術研究セ ンター,2001)を使用した.計算条件は,合田ら(1975) による越波流量推定図を参考に,海底勾配1/10の直立護岸 (堤前水深h=5m,天端高hc=2.6m)を対象とし,入射波は, 換算沖波波高H₀'=2.48m,有義波周期T_{1/3}=8.7sを設定した. この条件での無次元越波流量は10³オーダーである.

計算領域を図-1に示す.領域のサイズは,現地スケー ルで造波ソースから護岸前面までの水平距離を160m(有 義波の波長で約1.8波長),鉛直方向の高さを30mとし, 造波位置の水深は15mとした.セルのサイズについては, 護岸近傍での越波の状況を精度よく再現する必要がある ため可変格子を採用して,水平方向は造波ソースから護 岸前面まで0.64~0.5mと変化させ,鉛直方向は静水面の 上下5.5m程度の範囲を0.2mとして,それ以外を0.24mと 設定した.数値波動水路のセルのサイズについては,一 般的な推奨値が示されているが,越波や波の打上げのよ うな複雑な現象を対象とする場合,特に護岸近傍につい ては,問題に応じてより細かなセルを用いる必要がある とされている(財団法人沿岸技術研究センター,2008). 本研究での設定は,一般的な推奨値に比べて十分に小さ

く、このセルの設定により想定した越波流量を再現でき ることを予め確認した.なお、護岸位置での入射波を計 測するため、図-1下図に示す護岸を除いた領域について も計算を実施した.

入射波は、Bretschneider-光易型スペクトルを有する不 規則波とし、造波位置での水深がh=15mであるため浅水 変形を考慮して、有義波高H_{1/3}=2.27m,有義波周期 $T_{1/3}$ =8.7sとした造波信号を藤原(2005)の方法により作 成した.なお、護岸位置(h=5m)では、有限振幅効果を 考慮すると、浅水変形により有義波高は $H_{1/3}$ =3.02mと推 測される.

計算ケースは入射波の初期位相の組合せを変えた波列 が異なる4ケース(Case-1~Case-4)とした.各ケース について1020T_{1/3}(8874s)の造波信号を作成し,計算の 安定性を考慮して,図-2に示すように120T_{1/3}毎に10分割 して計算を行った.

計算は,まず,護岸を除いた領域について行い,護岸

設置位置での2箇所の水位変動記録(波高計間隔3.8m) から,入反射波分離推定法により入射波のスペクトルを 求め,これが目標のスペクトルに一致するよう造波信号 の調整を行った.その後,護岸を除いた領域で再度計算 を行い,護岸設置位置の水面変動を計測し,ゼロアップ クロス法により入射波の個々の波について波高と周期お よび平均水位を求めた.次に,同じ造波信号を用いて, 護岸を設置した領域での計算を行い,護岸背後に設置し た越波枡内に流入する水量を記録した.越波流量は,最 初の20T_{1/3}(174s)を除いた100T_{1/3}(870s)について,越 波枡に流入した水量から算定した.また,図-3に示すよ うに,護岸を除いた領域での計算で得た護岸位置での水 面変動と護岸を設置した領域で計算した越波枡内の累積 越波量から,一波毎の越波量を求めた.

(2)入射波の変動

図-4に護岸設置位置における入射波のスペクトルの例 を示す. 図中の実線は,目標としたBretschneider-光易型 スペクトルであり,全ての入射波について,図に示す程 度に一致することを確認した.

各波列のケースについて、100T_{1/3}毎にゼロアップクロ ス法で求めた有義波高,有義波周期の平均値と標準偏差 を表-1に示す.有義波高は目標値に比べて大きく、3.5m から3.9m程度である.有義波周期は8.2秒から8.5秒程度 で、目標値よりも短い.この理由は、図-4に示したスペ クトルにみられる,高周波数領域の非線形成分と考えら れる.ただし、ケース毎の有義波高と有義波周期の標準 偏差は小さく、平均値に対する割合(変動係数)は3%

図-4 護岸設置位置での入射波スペクトルの一例

表-1 護岸設置位置での有義波高,有義波周期,平均水位

	有義波高(m)		有義波周期(s)		平均水位(m)	
	平均	標準偏差	平均	標準偏差	平均	標準偏差
Case-1	3.92	0.078	8.17	0.068	-0.23	0.013
Case-2	3.74	0.076	8.32	0.130	-0.24	0.009
Case-3	3.48	0.071	8.53	0.117	-0.20	0.005
Case-4	3.54	0.095	8.25	0.185	-0.22	0.006

未満である.目標とした有義波高,有義波周期を正確に 再現できてはいないが,越波流量の変動性についての検 討が主たる目的であるため,これらの入射波を用いて護 岸を設置した領域における越波の計算を行った.

3. 波の作用時間による越波流量の変動

(1) 有義波高と越波流量の関係

図-5は各ケースにおける累積越波量の時系列で,120T_{1/3} 間毎に10分割して計算した結果から最初の20T_{1/3}分を除 き,100T_{1/3}分の累積越波量を繋げて1,000T_{1/3}間の変化を示 している.また,図-6は100T_{1/3}毎に求めた有義波高と越 波流量との関係で,入射波の護岸設置位置での有義波高 で無次元化している.なお,図中の1,000T_{1/3}は,各ケース の1,000T_{1/3}間で算定した無次元越波流量である.

ある期間についての越波流量は、その期間の累積越波 量の勾配を示すため、直線的に増加していれば、どの期 間を抽出しても越波流量は一定ということになる.図-5 より、各ケースの増加率は異なっているものの、いずれ

のケースも累積越波量は一見するとほぼ直線的に増加し ているようにみえる.しかし,実際には直線ではないた め,図-6に示すように,100T_{1/3}毎に求めた越波流量は 1,000T_{1/3}間での越波流量のまわりにばらついており,抽 出した期間によって越波流量は変動する.なお,有義波 高と越波流量の関係をみると,全体的には,有義波高の 増大に伴い無次元越波流量は増加している.しかし,有 義波高が同程度である Case-3 と Case-4 を比較すると, Case-4の越波流量はCase-3 に比べて小さくなっている.

(2) 波の作用時間による越波流量の収束

図-7に波の作用時間の増加による越波流量の収束を示 す. 図中の■は通算無次元越波流量で、横軸に示す波作 用時間で求めた無次元越波流量である.一方、●は 100T_{1/3}毎に算定した越波流量である.なお、太線で示し た一定値は1,000T_{1/3}間で求めた越波流量である.図より、 100T_{1/3}毎の越波流量は変動しているが、通算の越波流量 をみると、Case-1では、最初の100T_{1/3}で得た越波流量か らほぼ1,000T_{1/3}で求めた越波流量と等しく、Case-3にお いても300T_{1/3}程度でほぼ収束している.収束が遅い Case-2やCase-4においても、800T_{1/3}程で収束しているこ とがわかる.

(3) 越波の回数による越波流量の収束

作用する波の全てが越波を生じるわけではないため, 越波が生じた回数による越波流量の収束の状況を調べ た.図-8は図-7に示した通算の無次元越波流量(q₀と表 記)を越波回数に対して再整理したもので,各ケースと も1,000T_{1/3}間で求めた無次元越波流量(q_{0:1,000}と表記) により正規化している.本研究で設定した条件では,作 用波数に対する越波回数の割合が45%から55%程度で, 頻繁に越波が生じる状況である.いずれのケースも無次

図-7 波の作用時間による無次元越波流量の収束

図-8 越波回数による正規化無次元越波流量の収束

元越波流量の変動幅は、1,000T_{1/3}における無次元越波流 量の±5%以内である.収束の様子をみると、最も収束 が遅いケースでも、概ね500回程度の越波回数で無次元 越波流量がほぼ一定となっている.また、前述のCase-3 とCase-4の越波流量の差は、越波回数が異なることが一 因と思われ、高波の連なりの程度など入射波の波列の特 徴が異なるためと考えられる.

4. 越波量の出現頻度と越波流量の変動性

(1) 越波量の出現頻度

図-9は、Case-4について、1,000T_{1/3}の波作用時間のうち、最初の100T_{1/3}間、最初から連続した200T_{1/3}、500T_{1/3}、そして1,000T_{1/3}間における越波を生じた波の波高(便宜上,越波波高と呼ぶ)の出現頻度分布とそれらの波における越波量の出現頻度分布を示したものである.ただし、波の作用時間が異なると度数が異なるので、縦軸は確率密度で示している.また、横軸は、いずれの作用時間についても、1,000T_{1/3}での平均越波高および平均越波量で正規化しており、階級幅はそれぞれ0.1と0.5である. 図中に示す曲線は、越波波高については、正規分布と対数正規分布,越波量についても指数分布を示しており、

越波波高の出現頻度分布は、入射波全体の波高の出現 頻度分布の波高が大きい部分に相当する. 図に示すケース では、平均越波波高より少し小さい側にピークを示してい る. χ²適合度検定の結果では、正規分布と対数正規分布は ともに適合しているとはいえなかったが、図のケースにつ いては、感覚的には対数正規分布により近いように思われ る. ただし、他のケースでは正規分布に近い形状を示す場 合もあった. 越波量の出現頻度は、既往の研究で報告され ているように指数分布を示し、図にみられるように、波の 作用時間(越波回数)が増加するにつれ、指数分布により 一致する傾向が明確に認められる.

(2) 越波量の出現頻度分布と越波流量の変動との関連

作用波数が増えれば、越波回数も増加し、個別波の越 波量の出現頻度は理想的な指数分布に近づく.また、図-8 に示したように、越波回数の増加に伴って越波流量は一 定値へ収束する.したがって、越波量の出現頻度と指数

分布との一致の程度は越波流量の変動に関連しているこ とが容易に推測される.指数分布との一致の程度を定量 化するには,前述のχ²による適合度等が利用できるが, これらの適合度は標本数が影響するため,越波回数が異 なる場合の比較に難がある.そこで,自乗平均平方誤差 (RMSE)を利用した.ただし,越波量の大きさで重み付 けしたRMSE (w-RMSE)を次式により求めた.

$$w - RMSE = \sqrt{\left\{\sum_{i}^{N} \left\{ (Q_{i} / Q_{m})(p_{c}(i) - p_{e}(i)) \right\}^{2} \right\}} / N \dots (1)$$

ここで、Nは図-9に示した分布の階級数、 Q_i/Q_m はi番目の階級の中央値、Pc(i)は計算結果による越波量の確率 密度、Pe(i)は指数分布の値である。

図-10にw-RMSEと越波流量との関係を示す. 凡例の 100T_{1/3}は全てのケースにおける波作用時間100T_{1/3}(越波 回数は50から60回)で算出した正規化無次元越波流量 であり,200T_{1/3}以上とあるのは,各ケースで波作用時間

を200T_{1/3}から1,000T_{1/3}まで変化させた場合の正規化無次 元越波流量である.この図より、100T1/3での越波流量は w-RMSEが大きい範囲にあり変動幅も大きい.一方で, w-RMSEが小さい範囲には200T_{1/3}以上(越波回数で100 回以上)の越波流量が集中し,変動幅も小さくなってい る.このプロットの状況から判断して、プロットの存在 範囲の上限と下限を定めると、図中に示す破線のように なる.このように破線を決めると、w-RMSEが0の時に 1.0へ収束しないが、これは、図-9にみられるように、正 規化の基準とした1,000T13での越波量の分布自体に指数 分布との差があるためである. ところで, この上下の破 線の間隔が越波流量の変動範囲を表わすとすれば、越波 流量の変動の範囲はw-RMSEに対して、図-11に示すよ うになる. すなわち, w-RMSEが0.06から0.03に減少す ると、越波流量の変動幅は、16%から5%に減少する. したがって、越波量の出現頻度の指数分布への一致度は 越波流量の変動性を見積もる一つの目安となり得る.

5.おわりに

不規則波による越波流量を検討する際の越波流量の変 動性について,波の作用時間や越波回数および個々の波 による越波量の出現頻度との関連を数値実験の結果をも とに考察した.検討の結果,一連の波列に対する越波流 量については,500回程度の越波回数でほぽ一定値に収 束することがわかった.ただし,少ない越波回数でも収 束値に近い越波流量が得られる場合もあり,今回の検討 の範囲では,100T_{1/3}間(越波回数で50~60回程度)で 算定した無次元越波流量の90%は,1,000T_{1/3}での無次元 越波流量との差が±5%以下であった.少ない越波回数 でも,無次元越波流量が収束値に近い値を得られている か判断するには,越波量の出現頻度の指数分布への一致 度が一つの目安となり,指数分布によく一致しているほ ど越波流量の変動幅は小さく,収束値に近い値が得られ ることを示した.

本研究では、越波量の出現頻度の指数分布への一致度 を表わすために重み付き RMSEを利用したが、指数分布 への一致度と越波流量の変動性を関連付ける適切な指標 については検討の余地がある.また、目標となる指数分 布を得るには、それなりの越波回数が必要であり、現状 では、ある波列の入射波について多くの越波を生じさせ て、越波量の頻度分布から推定するしかないと思われる. したがって、非常に小さい越波流量の場合、越波量の頻 度分布が得られるほどの越波回数を実験や数値計算で生 じさせるのは現実的ではなく、別の観点からの検討が必 要と思われる.加えて、波列の特徴によると考えられる 越波流量の変動については更なる検討が必要である.

図-11 重み付きRMSEと正規化無次元越波流量の変動幅

謝辞:本研究を実施するにあたり,データの整理および 図表の作成には,修士課程の岩崎裕志君と村上邦宏君に 協力頂きました.ここに記して感謝の意を表します.ま た,本研究における数値実験には九州大学情報基盤研究 開発センターの研究用計算機システムを利用しました.

参考文献

- 泉宮尊司・濱田良平・石橋邦彦(2006):消波護岸の越波流量 の確率分布特性に関する研究,海岸工学論文集,第53巻, pp.716-720.
- 合田良実・岸良安治・神山 豊 (1975):不規則波による防波 護岸の越波流量に関する実験的研究,港湾技術研究所報 告,第14巻,第4号,44p.
- 財団法人沿岸開発技術研究センター(2001):数値波動水路の 研究・開発,沿岸開発技術ライブラリー,No.12, 296p.
- 財団法人沿岸技術研究センター (2008): CADMAS-SURF実務 計算事例集,沿岸開発技術ライブラリー, No.30, 306p.
- 藤原隆一(2005):数値波動水路内で線形理論を用いて発生さ せた不規則波の特性及び適用限界に関する一考察,海岸 工学論文集,第52巻, pp.41-45.
- Reis, T. M. and M. G. Neves (2008) : Investigating the lengths to scale model tests to determine mean overtopping discharges, Coastal Engineering Journal, Vol.50, No.4, pp. 441-462.