格子ボルツマン法による津波氾濫流の 2D-3Dハイブリッド・シミュレーション

2D-3D Hybrid Simulation of Tsunami Inundation Flow by Lattice Boltzmann Method

福井貴也¹ · 越村俊一² · 松山昌史³

Takaya FUKUI, Shunichi KOSHIMURA and Masafumi MATSUYAMA

We develop a hybrid 2D-3D simulation of Lattice Boltzmann Method (LBM) that increases the capability of simulating offshore/nearshore tsunami propagation and coastal inundation. For that purpose, the following schemes are newly developed to reproduce the free-surface movement of inundation flow including water splash in front of the structure, and nesting schemes of 2D/3D model for more efficient simulation of wave propagation and inundation in wider area. The model is validated by laboratory experiments of dam break and bore propagation.

1. はじめに

格子ボルツマン法(以下LBM)とは,分子動力学に基 づく新しい数値流体解析手法である.海岸工学分野では, 越村・村上(2009)やFrandsen(2008)によって浅水理 論と等価なLBM(Zhou,2004)による平面2次元の津波 陸上溯上解析が試みられているが,砕波現象や長波近似 が成立しない領域においては3次元問題への拡張が必要 となる.しかしながら,3Dモデルで津波挙動を再現する ことは,計算に必要な格子点の数が莫大で非実用的であ り,水深によっては非効率的でもある.本研究では, LBMを3Dモデルへ拡張し,自由表面流れを含む流れ場 への適用を行うと同時に,必要とされる精度に応じ,2D, 3Dのモデルの選択が可能な2D-3Dのハイブリッド・モデ ルの開発を行う.そして,外洋-浅海域の津波伝播と市 街地への氾濫を統一的に扱うことを目標とする.

そのために、本研究ではまず、荒木・越村(2009)に よる鉛直2次元LBMの自由表面追跡アルゴリズムの3次元 への拡張を行う.その際には、計算の安定性の向上のた めに、サブグリッド・スケール(SGS)の渦粘性モデル のLBMへの適用も行う.次に、平面2次元と3次元計算に おけるハイブリッド・シミュレーションにむけて、両モ デル間での領域接続スキームを開発する.そして、水柱 崩壊(ゲート急開流れ)のベンチマーク問題や開水路実 験の再現に適用する事で、本モデルの実用性を検証する.

2. 格子ボルツマン法

(1) 格子ボルツマン法の概要

LBMは流体を格子上を移動する仮想な粒子の集合体と

1	学生会員	学 (工)	東京工業大学 大学院社会理工学研究科
2	正会員	博(工)	東北大学准教授 大学院工学研究科

3 正会員 博(工) (財)電力中央研究所

して近似し,粒子の並進、衝突の時間発展を格子ボルツ マン方程式により計算してマクロな流れ場の諸量(水位, 流速等)を求めるメゾスケールの解析手法として位置づ けられている.

LBMでは、粒子分布関数によって巨視変数である密度 や流速が陽的に表される.したがって、Navier-Stokes式 の直接解法において問題となる圧力項を計算する必要が なくなり、従来法と比較して高効率な計算が可能となる. また、陽解法であることから並列計算に向き、マルチコ アCPUやGPUを用いた更なる高速化が期待できる.また、 分子の並進と衝突のみを考慮するため、複雑な物理現象 (例えば、多層流・毛細管現象)や境界条件(滑りの有 無・流入、流失条件)を少しのアルゴリズムの変更で再 現可能となる.

さらに、支配方程式である格子ボルツマン方程式は、 粒子の各速度成分の頻度(粒子分布関数)が変数として 表現され、その解はNavier-Stokes式(N-S式)と2次精度 で一致することが数学的に保証されているため(渡辺、 2006)、津波解析にも応用可能であると言える.

(2) 格子形状

本研究では、LBMの2次元計算において2次元9速度格 子 (D_2Q_9) モデルを用いるが、3次元計算においては3 次元19速度格子 (D_3Q_{19}) モデルを用いる.仮想粒子の 運動は図-1で示した方向のみに制限される.

(3) 格子ボルツマン方程式

LBMでは粒子分布関数 f_i の時間発展を解くが、 f_i は時間 tにおいて、位置xの格子点上に存在し、速度ベクトル e_i を持つ粒子の数を示す関数である。その定義から、巨視 的変数である密度、流速は式(1)のように計算される.

図-1 格子モデルと仮想粒子の運動方向

支配方程式はボルツマン方程式を離散近似し,衝突項 にBGKモデルを採用した,式(2)の格子ボルツマン方 程式(格子BGKモデル)である.

$$f_i(\boldsymbol{x} + \boldsymbol{e}_i \Delta t, t + \Delta t) = f_i(\boldsymbol{x}, t) - \frac{f_i(\boldsymbol{x}, t) - f_i^{eq}(\boldsymbol{\rho}, \boldsymbol{u})}{\tau} \cdots (2)$$

式(2)の第1項は移流を,第2項は非平衡量が1回の衝突ごとに1/ τ だけ減少していく事を意味している. τ は緩和時関係数で,流体の粘性を表しており,動粘性係数vと式(3)のような関係が成立する.ただし,実際の計算では $\Delta t \ge \Delta x$ で無次元化した v_l (Lattice viscosity)を用いる.

$$\tau = 3v \frac{\Delta t}{\Delta x^2} + \frac{1}{2} = 3v_l + \frac{1}{2}$$
(3)

一方、 f_i^{eq} は局所平衡分布関数であり、Maxwell分布を Taylor展開し、離散化することで得られる.支配方程式 が非圧縮流体における Navier-Stokes 式に一致する様に近 似係数を設定すると、 f_i^{eq} は $e=\Delta x/\Delta t$ として、式(4)のよ うになる.

$$f_i^{eq}(\rho, \boldsymbol{u}) = w_i \rho \left[1 - \frac{3}{2e^2} \boldsymbol{u}^T \boldsymbol{u} + \frac{3}{e^2} \boldsymbol{e}_i^T \boldsymbol{u} + \frac{9}{2e^4} (\boldsymbol{e}_i^T \boldsymbol{u})^2 \right]$$

where $w_1 = \frac{4}{9}, w_{2,\dots,7} = \frac{1}{18}, w_{8,\dots,19} = \frac{1}{36}$ (4)

外力項は局所平衡分布の計算の際に、流速uの代わり に外力による加速分を加えた流速u*を用いることで考慮 する。例えば外力として重力を考慮する場合、u*=u+ $\tau g \Delta t$ とする。ただし、 $g = [0, 0, g]^{T}$ で、gは重力加速度である。

(4) 壁面境界条件

壁面と隣接する流体セルにおいて,壁面から流体へ流 れる方向の粒子分布関数は式(2)では求めることがで きない.そこで,No-slip条件に対応したbounce-back条 件,もしくはslip条件に対応したmirror条件を用いる. bounce-back条件では,壁面の隣のセルでは運動量が0に なるように分布関数が補完される.また,mirror条件で は粒子の壁面に垂直な速度成分の合計は0となるが,壁 面に平行な成分は保存されるように次のステップの粒子 分布関数が決定される.

(5) 計算安定化

LBMでは計算の安定条件として「 τ がある程度大きい こと(厳密には τ >1/2)」と「外力項がある程度小さいこ と」がある.特に乱流場の計算には、LBMの安定条件を 満足するために非常に小さな Δx 、 Δt を注意深く選ぶ必要 がある.これら条件を同時に満たすようなパラメータの 探索は困難を極めるが、条件が1つでも満たされなくな ると計算が不安定になることがしばしば報告されてい る.そこで本研究では、Thürey (2007)を参考に、LBM におけるSmagorinskyモデル (Hou *et al.*, 1996)を適用し、 τ に関する安定条件の緩和を図る.

SGS粘性項を考慮するために、まず、非平衡量に応じた非平衡量テンソル $\Pi_{\alpha\beta}$ はそれぞれのセルにおいて以下のように計算する.

以降, α , $\beta = x, y, z$ で縮約をとるものとする. 局所応力テ ンソルの大きさ $|S| = \sqrt{2S_{\alpha\beta}S_{\alpha\beta}}$ は $\Pi_{\alpha,\beta}$ を用いて以下の ように計算される.

これらを用いてSGS粘性係数v。を考慮した緩和時間 では,

$$\tau_s = 3(\nu_l + \nu_e) + \frac{1}{2} = 3[\nu_l + (C_S \Delta)^2 |S|] + \frac{1}{2} \quad \cdots \cdots \cdots (7)$$

と表される.ただし $C_s = 3.0 \times 10^{-2}$ はSmagorinsky定数, $\Delta=1$ はフィルター幅と格子間隔の比である.

3. 自由表面の探索アルゴリズム

(1) 自由表面のモデル化:3種類のセル

3次元計算(LBM-3D)における自由表面の探索には, 各セルの巨視的変数として密度 ρ , 流速uに加え質量mと 充填率 ε を定義し,図-2のように各セル内の流体の充填 率 ε に応じてその属性を空隙(G)セル,界面(If)セル および流体(F)セルに分類する(Thürey,2007).ここ で $\varepsilon=\rho/m$ である.ただし,F,Gセルは計算では考慮しな い(水と空気の2相流計算は行わない).

(2) 質量・体積の計算

粒子分布関数は各セルにおける粒子の個数と考えることもできる.水粒子の質量が一様であるとすると,流体 セル同士における質量の変化量Δm_iは,式(2)の移流項

図-2 自由表面探索アルゴリズムの模式図

図-3 自由表面におけるセル状態の変換

から求められる,隣り合うセル同士の粒子分布関数の変 化量 $s_e = f_{i.} (\mathbf{x} + \mathbf{e}_i \Delta t, t) - f_i (\mathbf{x}, t) を用いて式(8)のように$ 求めることができる.ただし<math>i.は $\mathbf{e}_{i.} = -\mathbf{e}_i \varepsilon$ みたす粒子速 度成分である.式(8)は質量交換が界面セルと行われ る場合には両セル間の体積 ε を考慮すること,空隙セル とは質量交換は行わないことを表している.

$$\Delta m_i(\mathbf{x}, t) = \begin{cases} s_e \\ s_e \left[\frac{\epsilon(\mathbf{x} + \mathbf{e}_i \Delta t, t) + \epsilon(\mathbf{x}, t)}{2} \right] if \ \mathbf{x} + \mathbf{e}_i \Delta t \ \varepsilon \begin{cases} F \\ IF \\ G \end{cases}$$
(8)

そして∀iについての質量の変化量を用いて質量の時間発 展を

として求める. このようにして求めたIfセルでの充填率 の時間発展により、セルが「流体で満たされた (ϵ >1+ κ)」 か「空になった (ϵ <- κ)」かを判断する. そして、Ifセ ルにおいて生じる余分な (不足した)質量の周囲のセル へ分配を経て、図-3のようにセルの状態を変換し、自由 表面を更新する. ここで、 κ はセル変換にともなう充填 率の閾値である.

(3) 自由表面境界条件

界面セルにおいて,空隙セルと隣り合っていることから,壁面からの移流を考える場合と同様の問題が発生する. 空隙セルから流入する粒子分布関数は気体の密度 ρ_A と界面セルの流速 u_s を用いて,式(10)のように補間する.

$$f_{i_*}(\boldsymbol{x}, t + \Delta t) = f_i^{eq}(\rho_A, \boldsymbol{u}_s) + f_{i_*}^{eq}(\rho_A, \boldsymbol{u}_s) - f_i(\boldsymbol{x}, t) \cdots (10)$$

これは、「界面において液体(流体セル)と空気(間隙セル)の流速は等しい」という境界条件を表現している.

さらに、「界面では大気圧と圧力が釣り合っている」 という境界条件を満たすため、界面の傾きnを考慮し、 $n^{T} e_{i.}$ が正値となるセルについても、上記の様に粒子分布 関数を補間する.ここでnは充填率 ϵ を用いて $n = \nabla_{x} \epsilon o$ ように計算される.

4.2D-3Dハイブリッド・モデリング

(1) 浅水方程式に基づくLBMの2次元への縮約

 D_3Q_{19} 格子を用いた3次元LBMで広域の津波挙動を再 現しようとすると、計算に必要な格子点の数が莫大にな り、実用性に欠ける.そこで、あまり精度が必要とされ ない沖合などの領域では、Zhou (2004)の浅水理論に対 応したLBMを用いて流体の運動を記述する.このモデル は発展方程式は3Dモデルと同様であるが、格子モデル として図-1の D_2Q_9 モデルを用いること、局所平衡分布が 全水深hと平面流速 $v = [v_x, v_y]^T$ の関数である点に注意する 必要がある.

(2) 2D-3D間の領域接続

2D-3D間で Δx が異なる場合には越村・村上(2009)と 同様に線形補間を用いたネスティングを行うことで領域 接続を行う.しかしながら、両モデル間で用いる格子モ デル、巨視変数の種類が異なるため、領域接続には更な る工夫が必要である.まず、2Dから3Dへの接続の際に はz < hに存在するセルをFセル($\varepsilon = 1$)として扱い、それ 以外はGセル($\varepsilon = 0$)とする.Fセルとして初期化する際 に必要となる巨視変数である密度 ρ は、緩和時間に依存 する圧力勾配 $\omega = 1/\tau \varepsilon$ 考慮し、以下のように計算される.

ただし、 k_0 は前ステップの全水深 h_f を用いて $k_0=h_f/\Delta x$ とあ らわされ、 $g_l = g(\Delta t/\Delta x^2)$ である.流速は v_x 、 v_y がFセルに おいて鉛直方向に一様分布しているものとして u_x 、 u_y に接続 され、 u_z は運動学的条件によって計算される.そして、新 たに得られた巨視変数 ρ , uを用いて分布関数を $f_i = f_i^{eq}(\rho, u)$ と補間する.

また、3Dから2Dへの接続では、位置(x, y)に存在する界面セルの中で、一番低い位置にあるものの位置 z_s を用いてhが

と計算される.これは「位置 (x, y) において界面が唯一 である」ということを仮定している.流速に関しては u_x , u_y の断面平均をとったものが v_x , v_y として接続される. そ して,新たに得られた巨視変数h, vを用いて平衡分布関 数を計算し,これを粒子分布関数として補間する.

5. 数值計算例

(1) 3D計算:ダムブレーク問題

縦1m×横1m×奥行0.5mのアクリル製実験水槽を用い

図-5 決壊地点より下流側0.25mの水位の時系列

て,水槽中央のゲートを急開することで発生する自由表 面3次元流れ場の再現計算(3D-LBM)を行った.空間 分解能は100×100×50(case 1)とその2³倍の200× 200×100(case 2)で,四方の壁面およびゲートの境界 条件にはslip条件を用いた.図-4に水位の計算結果と高 速ビデオカメラで撮影した実験画像の比較を示す.ゲー ト急開後の水位の時系列はほぼ一致しており,ダムブレ ークの激しい水の動きを正確に追跡できることが実証で きた.

実験画像より目視で抽出した水位と式(12)に基づき 計算した水位の比較を図-5に示す.t=1s付近では,壁面 で跳ね上がった水塊が勢いよく水面と混ざり合って細か な気泡が混入するようになり,計算結果と実験結果は差 異が大きくなる.式(12)は,その仮定条件から,気泡 と水とが激しく複雑に混ざり合う場合の水位を,完全に 再現できるとはいい難い.この計算は流体挙動の慣性領 域のみを記述しているため,このような局所的かつ複雑 な現象を再現するには,計算領域全体で空間分解能を高 くするか,格子サイズを連続的に変化させるメッシュ・ アダプテーション(Thürey,2007)を導入する必要がある. 実際,図-5から,空間分解能を細かくとった方がより実 験値に近づく傾向を確認できており,所要の精度を満た すように空間分解能をどのように選択するかが今後の課

題である.

(2) 2D-3Dハイブリッド計算:津波氾濫流

長さ11m×幅0.9mの開水路(図-6)に設置された3つの 0.3m四方の障害物に段波を衝突させ、構造部周辺の氾濫流 を再現する.再現計算は Δx_{2D} =1.0×10²m, Δx_{3D} =5.0×10³m とし、境界条件については、大家ら(2008)に倣い、 Manning則に基づくno-slip条件を採用した.図-7に水面 形の時間変化の解析結果と高速ビデオカメラで撮影した 実験画像の比較を示す.2D計算と3D計算の接続が安定 に計算できることに加え、段波が障害物に到達した後の 水面形はほぼ一致している.したがって、水粒子の鉛直 方向加速度が卓越する流れを効率よく再現できることが 分かる.

また容量式波高計により計測した水位と計算結果の比 較を図-8に示す.これを見ると、ハイブリッド化によっ て構造物周辺の時系列水位が高精度で計算可能になった ことがみてとれる.実験画像から明らかな様に、段波先 端は砕波しているが、ハイブリッド化によりこの現象を 再現できる様になったからであると考えられる.ただし、 局所的かつ急激な水位変化、水しぶきの再現性には依然 として問題があるが、先の議論と同様に分解能をさらに 細かくとることである程度解決できると考える.

図-7 段波実験のt = 1.34 sにおける(左) 3D領域の計算結果と(右)実験画像

6. 結論

本研究では、LBMの長所を生かし、外洋伝播から市街 地氾濫までの統一的な津波の解析を行うための基礎的検 討を行った.得られた結論を以下に列挙する.

まずLBMの3次元における自由表面追跡アルゴリズム を開発し、ゲート急開流れによる自由表面の時間的変化 について、高速ビデオカメラで撮影した実験画像を用い てLBM解の検証を行った.ゲート急開後の過渡的な水面 形,壁面での水の跳ね上がり、壁面反射後の水面形がほ ぽ一致することを確認した.

次に,LBMによる市街地の津波氾濫流の高度な解析の 実現に向けて2D-3Dハイブリッド・モデルを構築した. 津波遡上の流れを想定した構造物周辺の流れ解析におい て,2Dへの縮約によって大規模計算を効率良く行なうだ けでなく,構造物周辺においては3D計算により2D計算 と比較して精度良く自由表面を追跡することが可能とな った.

LBMは,陽的な計算スキームで表現されるが,計算に は大量の物理メモリを必要とする.シミュレーションの 高速化や高効率化には,アルゴリズムの改良やGPUの利 用による工夫が課題となる. 謝辞:本研究の一部は,原子力安全基盤機構および科学 研究費補助金(課題番号:21651078)の補助を受けた. ここに記して謝意を表する.

参考文献

- 荒木 健・越村俊一 (2009):格子ボルツマン法による自由表 面流れの解析.土木学会海岸工学論文集,第56巻,pp. 56-60.
- 大家隆行・越村俊一・荒木 健(2008):格子ボルツマン法に 基づく津波遡上シミュレーション手法の開発,土木学会 海岸工学論文集,第55巻, pp.221-225.
- 越村俊一・村上和幸(2009):格子ボルツマン法による津波解 析コード構築に向けた実地形適用に関する研究.土木学 会海岸工学論文集,第56巻, pp.256-260.
- 渡辺 正 (2006):格子ボルツマン法 (2) ボルツマン方程式 からナビエ-ストークス方程式へ.応用数理,第16巻 (2), pp. 64-69.
- Frandsen, J. B. (2008) : A Simple LBE Wave Runup Model. Progress in Computational Fluid Dynamics, 8, pp. 427-437.
- Hou, S., J. D. Sterling, S. Chen and G. Doolen (1996) : A Lattice Boltzmann Subgrid Model for High Reynolds Number Flow. *Fields Institute Communications*, 6, pp. 151-166.
- Thürey, N. (2007) : Physically based Animation of Free Surface Flows with the Lattice Boltzmann Method, University of Erlangen-Nüremberg, Ph.D. thesis, 135p.
- Zhou, J. G. (2004) : Lattice Boltzmann Method for Shallow Water Flows, Springer, 124p.