高次Laplacianモデルを用いた高精度粒子法の スロッシング現象への適用性

Simulation of Sloshing by Accurate Particle Method with Higher Order Laplacian Model

後藤仁志¹ · Khayyer Abbas² · 五十里洋行³ · 堀 智恵実⁴ · 市川陽一⁵

Hitoshi GOTOH, Abbas KHAYYER, Hiroyuki IKARI, Chiemi HORI and Youichi ICHIKAWA

A higher order Laplacian model is proposed for enhancement and stabilization of pressure calculation by the MPS method. The higher order Laplacian model is derived by taking the divergence of a particle-based gradient model. The proposed higher order Laplacian is then applied for discretization of both Laplacian of Poisson pressure equation and that of the viscous forces in the CMPS-HS method. A few numerical tests, namely, exponentially excited sinusoidal pressure oscillations and a violent sloshing flow are carried out to demonstrate the enhancing and stabilizing effect of the proposed higher order Laplacian model.

1. はじめに

非満載のLNGタンカーが高波浪下で動揺する場合,タ ンク内の激しい流体運動がタンク壁面の損傷破壊に繋が るような大きな局所的衝撃圧を引き起こすことがあり, Sloshing現象は船舶の設計において必須の検討要件であ る.また,臨海部に多数存在するLNGタンクが長周期地 震動に見舞われた場合には、タンク内の激しいSloshing 現象と基礎地盤の液状化に起因する側方流動が複合し, タンクの破壊に至るといったcatastropheも危惧される. このように,Sloshing現象は海岸工学・船舶海洋工学に 共通の重要課題である.

粒子法は非線形自由水面追跡への適用に優れており, 最大の弱点であった圧力擾乱については,陽解法型(例 えば,SPH法,Smoothed Particle Hydrodynamics method; Gingold · Monagahan, 1977; Lucy, 1977)の場合,陰解法 型(例えば,MPS法,Moving Particle Semi-implicit method; Koshizuka · Oka, 1996, ISPH法,Incompressible SPH method; Shao · Lo, 2003)の場合のどちらにおける圧力計 算に対しても,改良が試みられてきている.とくに後者 の陰解法型粒子法に関しては,運動方程式の離散化に おける運動量保存性の保証および圧力のPoisson方程式 (PPE)の生成項の高精度化により,劇的な改善が示され た (CMPS-HS法,Corrected MPS method with Higher order Source term, Khayyer · Gotoh, 2009).

しかし従来の高精度粒子法でもなお, Sloshing現象のようなviolent flowの壁面境界上では誤った圧力値の検出

- 1 正会員
 博(工)
 京都大学教授工学研究科社会基盤工学専攻

 2 正会員
 博(工)
 京都大学講師工学研究科社会基盤工学専攻

 3 正会員
 博(工)
 京都大学助教工学研究科社会基盤工学専攻
- 4 学生員
 修(工)
 京都大学大学院博士課程社会基盤工学専攻

 5 学生員
 京都大学大学院修士課程社会基盤工学専攻

が頻発する.そこで本稿では,標準MPS法で用いられる Laplacianモデルが拡散の概念に基づいているのに対し て,粒子法の勾配モデルの発散をとる(Monaghan, 1992) ことにより,高次Laplacianモデルを新たに導出した.そ して,高精度粒子法において,このモデルを圧力の Poisson方程式および粘性項の計算に適用した手法と適用 前の高精度粒子法を用いて2次元Sloshing現象などのシ ミュレーションを行い,新しいLaplacianモデルの圧力擾 乱低減効果を検証した.

2. CMPS-HS法

(1) MPS法

標準 MPS法 (Koshizuka · Oka, 1996) において, Laplacian モデルは,

$$\nabla^2 \phi \rangle_i = \frac{2D_s}{n_0 \lambda} \sum_{j \neq i} (\phi_j - \phi_i)_{\mathcal{W}} (|\mathbf{r}_j - \mathbf{r}_i|) \qquad \cdots \cdots \cdots \cdots (1)$$

で定義される.ここに、 ϕ :スカラー物理量、Ds:次元 数、r:粒子座標、w(r):重み関数、 n_0 :初期状態におけ る粒子数密度である.上式に表れる定数 λ は、

と計算される.また,重み関数には,

$$w(r) = \begin{cases} \frac{r_{e}}{r} - 1 & 0 \le r < r_{e} \\ 0 & r_{e} \le r \end{cases}$$
(3)

(*r_e*:影響半径)が用いられる.そして,標準MPS法におけるPPEは,

と表される.ここに、 Δt :計算時間間隔、k:計算ステ

ップ, n:: に 版粒子数密度である.

(2) CMPS-HS法

CMPS-HS法 (Khayyer・Gotoh, 2009) は,標準MPS法 に対して,運動量保存性改善のために圧力勾配モデルを 修正し,圧力計算の改良のためにPPEの生成項を高精度 化したものである.粒子数密度の実質微分を,

のように考慮することで、高精度化したPPEの生成項を 導出し直した.それは次式のように表される.

3. 高次 Laplacian モデル

CMPS-HS法は、PPEに高精度生成項を適用しているが、 式(6)の左辺すなわち圧力のLaplacianは標準MPS法に おける記述(式(1))のままである。圧力計算をより安 定化させるためには、高精度のLaplacianモデルを導出す る必要がある。粒子iにおけるLaplacianは、次式のよう に、その粒子において計算される勾配の発散をとること によって定義される(Monaghan, 1992).

 $\langle \nabla^2 \phi \rangle_i = \nabla \cdot \langle \nabla \phi \rangle_i$ (7)

ここで φ は 一般的物理量である. 当該粒子における勾配は,

$$\langle \nabla \phi \rangle_i = \frac{1}{\sum_{i\neq j} w_{ij}} \sum_{i\neq j} (\phi_j - \phi_i) \nabla w_{ij}$$

$$= \frac{1}{\sum_{i\neq j} w_{ij}} \sum_{i\neq j} \phi_{ij} \nabla w_{ij} \quad ; \quad \phi_{ij} = \phi_j - \phi_i \quad \dots \dots \dots (8)$$

と表される. MPS法は本来, 非圧縮性流れのために開発 されたものであるから, 粒子*i*の近傍粒子*j*との距離から 算出される重み関数の合計は, 常に計算初期における合 計, つまり初期粒子数密度*n*₀に等しいと仮定している. したがって, 式(7) および式(8) より, 粒子*i*におけ る Laplacian は次式になる.

$$\nabla \cdot \langle \nabla \phi \rangle_i = \frac{1}{n_0} \sum_{i \neq j} \left(\nabla \phi_{ij} \cdot \nabla w_{ij} + \phi_{ij} \nabla^2 w_{ij} \right);$$
$$n_0 = (n_i)_0 = \left(\sum_{i \neq j} w_{ij} \right)_0 \qquad (9)$$

ここで、上式には∇φ_i・∇_{Wi}が含まれていることに注目する.標準MPS法および従来の高精度粒子法(CMPS-HS

法)では、この項が有する相対物理量の勾配を無視して いたために、粒子数密度やPPEの両辺の値の変動の評価 法に一貫性(consistency)が保たれず、大加速度運動状 態における動壁面境界付近での際立った数値誤差が引き 起こされていた(詳しい考察は後述).

2次元直交座標の場合、 ϕ_{ii} と w_{ii} の勾配はそれぞれ、

$$\nabla \phi_{ij} = \frac{\partial \phi_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \mathbf{i} + \frac{\partial \phi_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \mathbf{j};$$

$$\nabla w_{ij} = \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \mathbf{i} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \mathbf{j} \qquad (10)$$

と表されるため,

となる.一方,

$$\nabla^{2} w_{ij} = \nabla \cdot \nabla w_{ij} = \frac{\partial}{\partial x_{ij}} \left(\frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial x_{ij}} \right) + \frac{\partial}{\partial y_{ij}} \left(\frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial y_{ij}} \right)$$
$$= \frac{\partial}{\partial r_{ij}^{2}} \left(\frac{\partial r_{ij}}{\partial x_{ij}} \right)^{2} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial^{2} r_{ij}}{\partial x_{ij}^{2}}$$
$$+ \frac{\partial}{\partial r_{ij}^{2}} \left(\frac{\partial r_{ij}}{\partial y_{ij}} \right)^{2} + \frac{\partial w_{ij}}{\partial r_{ij}} \frac{\partial^{2} r_{ij}}{\partial y_{ij}^{2}}$$
$$= \frac{\partial}{\partial r_{ij}^{2}} \left(\frac{x_{ij}^{2}}{r_{ij}^{2}} + \frac{y_{ij}^{2}}{r_{ij}^{2}} \right) + \left(\frac{2}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} - \frac{1}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right)$$
(12)

ここで、上式の誘導には

$$\frac{\partial^{2} r_{ij}}{\partial x_{ij}^{2}} = \frac{\partial}{\partial x_{ij}} \left(\frac{\partial}{\partial x_{ij}} \right) = \frac{\partial}{\partial x_{ij}} \left(\frac{x_{ij}}{r_{ij}} \right) = \frac{1}{r_{ij}} - \frac{x_{ij}^{2}}{r_{ij}^{3}} \quad \dots (13)$$

を用いた.以上より,式 (9) および式 (11), (12) か ら次式が導かれる.

$$\nabla \cdot \langle \nabla \phi \rangle_{i} = \frac{1}{n_{0}} \sum_{i \neq j} \left(\frac{2\phi_{ji}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} + \phi_{ij} \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} + \frac{\phi_{ij}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right)$$
$$= \frac{1}{n_{0}} \sum_{i \neq j} \left(\phi_{ij} \frac{\partial^{2} w_{ij}}{\partial r_{ij}^{2}} - \frac{\phi_{ij}}{r_{ij}} \frac{\partial w_{ij}}{\partial r_{ij}} \right) \quad \dots \dots (14)$$

さらに,式(3)の重み関数を適用すれば,2次元における高次Laplacianモデルは以下のようになる.

$$\nabla \cdot \langle \nabla \phi \rangle_i = \frac{1}{n_0} \sum_{i \neq j} \left(\frac{3 \phi_{ij} r_e}{r_{ij}^3} \right) \qquad (15)$$

CMPS-HS法において、上式のモデルを、圧力の Laplacian (式 (6) 左辺) およびNavier-Stokes式の粘性項 に対して導入したものをCMPS-HS-HL-HV (CMPS-HS with Higher order Laplacian for PPE and Higher order Laplacian for Viscous forces) 法と呼ぶ. これに対し、高 次Laplacianモデルを適用しない従来のCMPS-HS法のこ とを、本稿中ではこれ以降、CMPS-HS-SL-SV (CMPS-HS with standard Laplacian for PPE and standard Laplacian for Viscous forces) 法と呼ぶことにする.

次章において、CMPS-HS-HL-HV法の性能,つまり、 本稿で導出した高次Laplacianモデルの効果を評価するた めに、2つの異なる計算条件で2次元Sloshingシミュレー ションを行う.

4. 圧力場の解の比較

(1) 振動重力場における圧力推定; case1

本節ではまず,計算対象(図-1)を構成する水粒子お よび壁粒子ともに全く動かさず,鉛直方向加速度,すな わち重力加速度を,

 $\boldsymbol{g}_{d} = 2\boldsymbol{g} + 0.4\boldsymbol{g}\exp\left(0.05\frac{\pi t}{T}\right)\sin\left(\frac{2\pi t}{T}\right)$

として変動させた場合に、シミュレーションで得られる 圧力値の安定性と精度を検証する.ここに、g:地球で の重力加速度(本計算では鉛直下向きに 9.81m/s^2), g_d : 振動重力加速度, T:振動周期(caselではT=0.01 s), t: 計算時刻である.粒子径を5.0 mmとした.

図-2は、水槽中央の底面(図-1のA点)における圧力 の時系列について、CMPS-HS-SL-SV法およびCMPS-HS-HL-HV法により計算したものと、理論値を示している. この図より、強非線形圧力変動下でのCMPS-HS-SL-SV 法の圧力推定精度が、高次Laplacianモデルの適用 (CMPS-HS-HL-HV法)によって顕著に改善されているこ とがわかる.図-2に示された圧力変動の位相と重力振動 の位相は、一致すると見てよい.重力の振動幅が大きく なってくると、CMPS-HS-SL-SV法の圧力擾乱が顕在化 し始める.そして、重力振動が極値を持つ時刻、つまり 圧力変動の極値近傍(図-2(b))では、CMPS-HS-SL-SV 法による計算に大きな非物理振動を呈する.それに対し て、CMPS-HS-HL-HV法では、理論値に近い曲線が描か れる.

(2) Sloshing現象下における圧力推定; case2

この節では、本稿で提案した高次Laplacianモデルの適 用による圧力擾乱低減効果をさらに強調するため、水平 方向の周期振動(sway運動)を伴う水槽内で起こる Sloshing現象のシミュレーションを行う.ここでは、計 算対象(図-1)を構成する粒子のうち、壁粒子を水平方 向へ、

に従って振動させる.計算条件は,Kishevら (2006) に よる実験条件に合わせた.振動振幅A_{max}=50mm,振動周 期*T*=1.50s,粒子径は3.0mmとした.

図-3は、図-1に表される側壁面上の点Bで測定された 圧力値時系列を示す. Kishevら (2006) による実験デー

図-3 Sloshing 現象シミュレーションにおける圧力時系列の比較

タとともに、CMPS-HS-SL-SV法およびCMPS-HS-HL-HV 法による計算結果を載せた.水槽がsway運動をしている 間,圧力時系列は、類似の非ゼロ値パターンを繰り返す. そのパターン1つ分を拡大したものが図-3(a)である. CMPS-HS-SL-SV法による圧力結果では、比較的大振幅 の非物理的な振動が頻繁に表れ、特にパターンの後半に 関して実験値とのずれが目立つ.これらの数値誤差振動 が、CMPS-HS-HL-HV法においては効果的に除去されて いることがわかる.

図-4には、t=1.86sおよびt=2.58sにおける瞬間図例を 圧力分布と併示した.この図でも、CMPS-HS-HL-HV法 による、圧力場において際立った改良が見受けられる. CMPS-HS-SL-SV法による結果では、すでにt = 1.86sにお いて、特に壁面境界近辺での圧力分布にノイズが存在し 始め、t=2.58sでは、さらに擾乱が目立つようになる.そ の一方、CMPS-HS-HL-HV法は、比較的滑らかな圧力分 布を保持し続ける.

これまでの著者らの研究(例えば,Khayyer・後藤, 2008)における圧力推定の際にも、ダム崩壊流れ後の壁 面衝突といった激しい圧力変動が,CMPS-HS-SL-SV法 などの高精度粒子法によって概ね再現されることは示し てきた.しかし,それらの圧力計測点は不動壁面の固定 点であった.Sloshing現象のように,比較的大きな加速 度で壁を動かす場合,壁粒子やその近傍粒子における PPEの生成項は,時空間的に際立って変化する.それは, 式(6)右辺で表されるように,PPEの生成項が,粒子の 相対速度および相対位置の関数だからである.この生成 項の表式とPPEの左辺である圧力のLaplacianモデルの一 貫性に欠陥のある状態で,かつ,生成項の変動が激しい 場合, 圧力擾乱が顕著なものとなる.

図-3(a)の後半は、時刻t=8.7-9.3sあたりに相当する. 測定点Bがあるほうの壁に流体塊が衝突(t=8.3s付近) した後、流体粒子の水平方向速度は即座にゼロに近い値 となる.しかし同時に、そうした流体の物理的な挙動と は無関係に、壁粒子は水平右方向へ強制的に動かされる. しかも、時刻t=9.0s近傍ではsway運動の速度の絶対値が 最も大きい.ゆえに、PPEの生成項と圧力のLaplacianの 一貫性に欠陥のある標準のLaplacianモデル(CMPS-HS-SL-SV法)では、激しい圧力擾乱が生じる結果となった. CMPS-HS-HL-HV法では、そうした圧力擾乱が抑制され、 高次Laplacianモデルの採用が、PPEの両辺の評価におけ る一貫性を改善したことが示された.

5.おわりに

本稿で導出した高次Laplacianモデルを適用した高精度 粒子法が、Sloshing現象に代表される壁面境界そのもの が大きく運動するような計算条件下においても、より正 確な圧力推定を可能にすることを示した.

しかし、衝突時刻周辺においてはCMPS-HS-HL-HV法 でも、一定レベルの圧力擾乱が残るので、これを低減さ せるための更なる改良が必要となる.また一方、Sloshing 現象は実際には、空気封入を伴い、かつ乱流場の現象で ある.したがって、二相流モデルや乱流モデルの開発は、 本研究の発展における必須要件となるだろう.

謝辞:本研究の遂行にあたり,(株)ニュージェックよ り研究資金の提供をいただいたことを記して,謝意を表 したい.

参考文献

- Khayyer Abbas ・後藤仁志 (2008) :粒子法における圧力擾乱 低減のためのCMPS-HS法の提案,海岸工学論文集,第55 巻, pp. 16-20.
- Gingold, R. A. and J. J. Monaghan (1977) : Smoothed particle hydrodynamics: theory and application to non-spherical stars, *Mon. Not. R. Astron. Soc.*, 181, pp. 375-89.
- Khayyer, A. and H. Gotoh (2009): Modified Moving Particle Semiimplicit methods for the prediction of 2D wave impact pressure, *Coastal Eng.*, 56 (4), pp. 419-440.

Kishev, Z.R., C. Hu, M. Kashiwagi (2006): Numerical simulation of

violent sloshing by a CIP-based method, *Journal of Marine Science and Technology*, 11(2), pp. 111-122.

- Koshizuka, S. and Y. Oka (1996) : Moving particle semi-implicit method for fragmentation of incompressible fluid, *Nuclear Science and Engineering*, 123, pp. 421-434.
- Lucy, L. B. (1977) : A numerical approach to the testing of the fission hypothesis, *Astron. J.*, 82, pp. 1013-24.
- Monaghan, J. J. (1992) : Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys 30, pp. 543-574.
- Shao, S. D. and E. Y. M. Lo (2003) : Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, *Advances in Water Resources*, 26 (7), pp. 787-800.